
/

NASA Contractor Report 195074

A Performance Prediction Model for a

Fault-Tolerant Computer During
Recovery and Restoration

Rodrigo A. Obando and John W. Stoughton

Old Dominion University, Norfolk, Virginia

Cooperative Agreement NCC1-136

February 1995

National Aeronautics and

Space Administration
Langley Research Center

Hampton, Virginia 23681-0001

TABLE OF CONTENTS

Chapter/Section Page

TABLE OF CONTENTS .. i

LIST OF FIGURES .. vii

LIST OF TABLES .. x

Chapter

1. INTRODUCTION .. 1

1.1 Fault-Tolerant Computing ... 3

1.2 ATAMM Context ... 4

1.3 Current Research Areas ... 4

1.4 Research Objective .. 7

1.5 Report Organization ... 10

2. THEORY .. 11

2.1 Graph Model .. 12

2.1.1 XAMG .. 14

2.1.2 XCMG .. 15

2.2 Node Model Definitions .. 16

2.3 Fault Node Model ... 18

.

2.4 Delay Propagation Model ... 21

2.4.1 Fire-Equivalent Node Model 21

2.4.2 Delay Propagator Nodes and Delay Absorbant

Edges .. 23

2.4.3 Lifetime Equivalent Paths 26

2.4.4 Dominant Lifetime Equivalent Paths 28

2.4.5 Path construction .. 31

2.4.5.1

2.4.5.2

2.4.5.3

2.4.5.4

Concatenation .. 32

Parallel Paths .. 33

Distributivity and Commutativity 34

Identifying the Dominant LEP 34

2.4.6 Alternate Method for Identifying the Dominant

LEP .. 36

2.5 Definitions ... 37

2.5.1 TBIOn, m ... 37

2.5.2 CPn, m ... 38

2.5.3 System Slack ... 38

2.5.4 TBIOLB(i,i+I) .. 38

2.6 Summary ... 39

DEVELOPMENT ... 46

3.1 ATAMM Multicomputer Operating System (AMOS) 47

ii

°

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

AMOS Overview .. 48

Object-Oriented Programming Paradigm 51

AMOS Organization .. 53

AMOS Messages .. 56

State Diagram ... 58

3.2 Fault Tolerance Scope .. 59

3.2.1 Error Detection .. 59

3.2.2 Damage Confinement and Assessment 62

3.2.3 Error Recovery .. 64

3.2.4 Fault Treatment and Continued System Service 66

3.3 Fault-Tolerant AMOS ... 67

3.3.1 Error Detection in AMOS 67

3.3.2 Damage Confinement and Assessment in AMOS 71

3.3.3 Error Recovery in AMOS 72

3.3.4 Fault Treatment and Continued System Service in

AMOS ... 73

3.4 Summary ... 75

EXPERIMENTS .. 80

4.1 Simulation Development .. 81

4.2 Simulation Verification Experiments 85

4.2.1 First Comparison .. 88

4.2.1.1 Micro Comparison 89

iii

o

4.3

4.2.2

4.2.2.1

4.2.2.2

4.2.1.2 Macro Comparison 90

Second Comparison ... 90

Micro Comparison 91

Macro Comparison 91

4.2.3 Summary ... 92

Fault Transient Verification .. 93

4.3.1 Comparison .. 94

Micro Comparison 94

Macro Comparison 95

4.4 Simulation Examples ... 98

4.4.i Overview .. 98

4.4.2 Experiment # 1, an Example 100

4.4.3 Experimental Results ... 102

4.5 Chapter Summary .. 148

CONCLUSIONS .. 150

5.1 Objectives .. 150

5.2 Model Development .. 151

5.3 Evaluation and Testing .. 155

5.4 Simulation Evaluation ... 156

5.5 Multicomputer Transient Model Evaluation 158

5.6 Conclusions ... 159

5.7 Future Research .. 162

iv

BIBLIOGRAPHY ... 166

APPENDIX A ... 169

V

LIST OF FIGURES

FIGURE

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.a

PAGE

Example of an AMG .. 41

Example of an XAMG ... 41

Example of an XCMG ... 42

Nodes Connected in Directed Path ... 43

Nodes Connected Through Parallel Paths ... 43

Example of Graph Reduction .. 44

2.6.b .. 44

2.6.c ... 44

2.6.d .. 44

2.6.e ... 44

2.6.f ... 45

2.6.g .. 45

2.6.h .. 45

2.6.i ... 45

3.1.

3.2.

3.3.

An Enabled Node in a Marked Graph .. 76

Simplified Structure of an Object ... 76

Resource Logical Structure ... 76

vii

FIGURE

3.4.

3.5.

3.6.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

PAGE

Resource State Diagram ... 77

Augmented Resource Logical Structure ... 78

Augmented Resource State Diagram ... 79

Intermediate Graph .. 107

Application Algorithm Graph ... 107

Results of Micro Comparison #1 ... 108

Results of Macro Comparison #1 .. 109

Results of Micro Comparison #2 ... 110

Results of Macro Comparison #2 .. 111

Results of Micro Compamson #3 ... 112

Results of Macro Comparison #3 .. 115

TBI, TBO and TBIO for Experiment #1 ... 116

TBI, TBO and TBIO for Expermaent #2 ... 119

TBI, TBO and TBIO for Expermaent #3 ... 121

TBI, TBO and TBIO for Experiment #4 ... 123

TBI, TBO and TBIO for Experiment #5 ... 125

TBI, TBO and TBIO for Experiment #6 ... 127

TBI, TBO and TBIO for Experunent #7 ... 129

TBI, TBO and TBIO for Experiment #8 ... 131

TBI, TBO and TBIO for Experiment #9 ... 133

TBI, TBO and TBIO for Expemment #10 135

.°.

VIII

FIGURE

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

PAGE

TBI, TBO and TBIO for Experiment #11 137

TBI, TBO and TBIO for Experiment #12 139

Operating Point Plane

Operating Point Plane.

TBI = 7000 .. 141

TBI = 6200 .. 142

Operating Point Plane, TBI = 8000 .. 143

Operating Point Plane

Operating Point Plane

Operating Point Plane

Operating Point Plane

Fault at Node 2 .. 144

Fault at Node 3 .. 145

Fault at Node 1 .. 146

Fault at Node 4 .. 147

A.1 ... 170

A.2 ... 171

A.3 ... 172

A.4 ... 172

A.5 ... 172

A.6 ... 174

A.7 ... 174

A.8 ... 174

A.9 ... 176

A.10 ... 176

ix

LIST OF TABLES

TABLE

3.1.

3.2.

4.1.

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

PAGE

AMOS Messages .. 57

New AMOS Message ... 70

Results of Micro Comparison #1 ... 108

Results of Macro Comparison #1 .. 109

Results of Micro Comparison #2 ... 110

Results of Macro Comparison #2 .. 111

Results of Micro Comparison #3 ... 113

Results of Macro Comparison #3 .. 114

Summary of All Experiments ... 116

Experimental and Calculated Values ofTBI, TBO and TBIO for

Experiment #1 ... 117

Summary #1 of Experimental Results ... 118

SllmmAry #2 of Experimental Results ... 118

Experimental and Calculated Values of TBI, TBO and TBIO for

Experiment #2 ... 120

Experimental and Calculated Values ofTBI, TBO and TBIO for

Experiment #3 ... 122

X

TABLE

4.13. Experimental and Calculated Values of TBI

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

PAGE

TBO and TBIO for

Experiment #4 ... 124

Experimental and Calculated Values of TBI TBO and TBIO for

Experiment #5 ... 126

Expernnental and Calculated Values of TBI, TBO and TBIO for

Experiment #6 ... 128

Experimental and Calculated Values of TBI, TBO and TBIO for

Experiment #7 ... 130

Experimental and Calculated Values of TBI, TBO and TBIO for

Expemment #8 ... 132

Expemmental and Calculated Values of TBI TBO and TBIO for

Expemment #9 ... 134

Expemmental and Calculated Values of TBI TBO and TBIO for

Expemment #10 ... 136

Expemmental and Calculated Values of TBI TBO and TBIO for

Experiment #11 ... 138

Expemmental and Calculated Values of TBI TBO and TBIO for

Expemment #12 ... 140

xi

CHAPTER ONE

INTRODUCTION

This report addresses the modeling and design of a fault-tolerant

multiprocessor system. In particular, the behavior of the system during

recovery and restoration is investigated. Fault-tolerant computing has

become an increasingly important facet of real-time computing systems.

Real-time computing is a rapidly growing field in its own right. The

demand for real-time computing systems in industries such as aeronautics

and defense has produced an increase in research in this area. A real-time

computing system designer cannot afford to omit fault-tolerant capabilities

in systems designs. It is not realistic to consider that the system will never

fail. When a real-time system requires that the output meet deadlines

with high reliability, then the system has to be fault-tolerant.

A computing system with fault-tolerant capabilities has to deal with

recovery and restoration of the system after an error has been detected. A

fault-tolerant computer requires redundancy of some kind to recover from a

fault. Such redundancy may be temporal or hardware based. An example

of temporal redundancy is the process of retry after a failure of a task. An

example of hardware redundancy is the use of multiple computing

resources to perform the same task concurrently [1], [2], [7].

A real-time computing system with fault-tolerant capabilities has

greater requirements than other computing systems. One of these

requirements is that in addition to recovering from a fault it must deliver

its output before or on-a given deadline. Meeting such requirements is

critical in the design and implementation of real-time fault-tolerant

systems. A fault in any computing system causes the system to go through

a transient in its behavior. A fault-tolerant system is designed to prevent

any further damage in the system and to repair the damage that has been

done. A system without fault-tolerant facilities is doomed to fail to perform

to specifications if a fault occurs. A fault-tolerant real-time computing

system, on the other hand, should be able to go through the transient

meeting also the data deadlines imposed on the system. Determining the

system feature of transient behavior is crucial in the design of fault-

tolerant real-time computing systems [3].

Prediction of performance during a transient phase, such as that

caused by a fault, requires first the prediction during the steady-state

phase of the system. Fortunately, there exists a model that allows such a

prediction: the Algorithm To Architecture Mapping Model (ATAMM) [4],

[5], [6] developed at Old Dominion University. The development of

ATAMM has made performance prediction of a class of multiprocessor

systems possible. Steady-state performance prediction is possible for

2

systems designed to follow the ATAMM design guidelines. Bounds may be

calculated for the inverse of system throughput (TBO: Time Between

Outputs) and system delay (TBIO: Time Between Input and Output).

1.1 Fault-Tolerant Computing

One taxonomy of the phases that a fault-tolerant computing system

goes through is error detection; damage confinement and assessment; error

recovery; and fault treatment and continued system service [1]. An error is

the deviation from specifications caused by a fault and can be detected by

hardware mechanisms or software procedures. Damage confinement and

assessment is the process of reducing the spread of damage and estimating

its extent in the system. The kind of process to be used depends on the

type of fault detection used. If the damage is beyond repair it may be

necessary to restart the system from its initial state. After having assessed

the damage, recovery from the damage needs to take place. Error recovery

is a very important aspect of fault-tolerant computing since the system

depends on a proper mechanism to recover the lost work to continue

reliably. The phase of fault treatment and continued service is used to

locate the fault and remove it and to leave the system in a healthy state.

After this stage the system may continue normal operation until another

fault occurs [1], [2], [7].

3

1.2 ATAMM Context

Of interest is the behavior of a multiprocessor system operating

periodically on a set of inputs. The application of ATAMM has been limited

to large grain, decision-free algorithms. The number of computing

resources the system contains is on the order of twenty. The

communication-to-computing effort ratio is small.

It is of interest to use the ATAMM model to design fault-tolerant

computers. A system designed to follow the ATAMM rules is a good

candidate for a fault-tolerant computer since the model predicts how the

system should be changed to continue after a failure of a computing

resource. The system can be designed to follow a given performance path

from n computing resources to 1 computing resource. For every number of

computing resources, a different performance operating point can be

obtained. In a graceful degradation scenario, ATAMM lends itself to

predict a particular degradation path, optimized for the application at hand

[4], [5], [6].

1.3 Current Research Areas

Three of the current research areas in fault-tolerant computing are

faulty processor detection, performance prediction in a fault-tolerant

system, and estimation of software reliability.

Faulty processor detection in a multiprocessor system can be

accomplished in several ways. A method that has been used for many

4

years and has been the subjectofmuch research isthe testingof

computing processorsby other computing processors [9],[I0],[11],[12],

[13],[14],[15].This method involvesthe use of the computing processors

themselves testingother computing resources in the system or a master

controllerthat testsallprocessors.The number ofteststhat are necessary

to testa given system isan issue of interest.Other issues are the topology

ofthe testgraph to testeffectivelyallcomputing resources and the validity

of testsgiven that a computing resource isidentifiedas faultyby others

that may not allbe healthy. For these methods to succeed, itisnecessary

to design testalgorithms forspecificsystems or architecturesand

sometimes they are tiedvery closelytothe interconnectionnetwork ofthe

computing resources. This approach isbased in the work described in [10]

which isdeterministicin principle.A more recent procedure of diagnosing

faultyprocessorsisexplained in [25].This procedure deals with arbitrarily

connected processors providingfaultyprocessor diagnosis fora wider

varietyofconnection networks. In contrastto the methods derived from

[10]thisapproach isstochasticin nature and determines a "most

probable" processor that isfaulted.

Performance predictionin a fault-tolerantreal-timesystem has been

addressed by Kant [16].His model assumes that there are recovery blocks

(RB) and N-version programming (NVP) [17]involved in the design of the

system. The model is a hierarchical one. Starting from the top level of the

program or main routine, it decomposes the system into different levels of

complexity. The top level is designated as I and the subsequent levels are

labeled in increasing order. This model is stochastic and also addresses

some reliability measures of the system. It assumes a separate master

processor running the supervisor procedure. The analysis is performed on

the processes of the system instead of the processors. The processors are

assigned to processes but some processes can be left dormant while other

processes are spawned in the system. This model specifically addresses the

software reliability of the system and not explicitly that of the hardware.

The model mentioned above is based on N-version programming [17]

which assumes that the different sol, ware versions are uncorrelated, i.e.,

statistically independent. A recent technique that addresses a correlated

set of software versions is explored in [26]. This technique uses the

mutation analysis to create a data set to test software modules. Mutation

analysis refers to the mutation of software modules. The idea is based on

the fault-injection techniques used to test hardware. Mutation is

performed by artificially introducing software errors in a module. A test

data set is produced that identifies the mutant modules as faulty. The

underlying assumption is that ifa mutant module is not identified as

faulty, a potential software fault is in the original module. This method

has proven to provide better reliability than the N-version programming.

6

i.4 Research Objective

The restrictions that apply to a real-time, fault-tolerant

multicomputer system make this class of systems stand out from the rest

due to the delicate balance of performance versus reliability. Increasing the

system's performance may impair its reliability and vice versa. The models

in the current research areas do not address the question of whether a

system ever restores to a state within specifications. This question is

important to real-time systems since a state that is reached after recovery

from a fault may be operational but not within the system specifications.

An example may be a computer which provides control for a given system.

After a fault occurs in the system, the computer performs the required

fault-tolerant phases and may continue evaluating input data and

delivering output data, but the system delay may not be within the

specified limits. This is an undesirable characteristic since, although the

system may take care of the damage caused by a fault, it may never reach

the desired operating point or state.

The problem domain of interest is that of systems executing single-

input single-output graphs, with or without recursive circuits, designed

under ATAMM. It is assumed that the system processes multiple data

packets, i.e., input data is presented to the system periodically. The

systems have a time limit to deliver their outputs; therefore, they are

considered real-time systems. It is also assumed that only one computing

resource fails at a time and that no other computing resource fails before

the system fully recovers. The latter suggests that the system is fault-

tolerant to some extent.

The application of ATAMM to real-time computing systems has

opened the possibilities of predicting the requirements of a multiprocessor

system to meet data deadlines. Under steady-state conditions,

performance of an algorithm processing repetitive input data sets can be

predicted. By the argument explained above, there is a need for fault-

tolerant capabilities for a highly reliable real-time system. Therefore, a

system designed under the ATAMM rules should have fault-tolerant

capabilities added. If this is the case, the issues at stake are the behavior

of the system upon the occurrence of a fault; the time it takes to recover

and restore the system; and whether or not the system still meets the

deadlines it was designed for atter the fault. Addressing these and other

issues is crucial in the design of fault-tolerant, real-time computing

systems [3].

An analysis procedure is necessary to predict performance during

transients due to faults and to define a minimum set of requirements of a

fault-tolerant real-time system designed to follow the ATAMM rules.

However, the ATAMM model has not been previously used to predict

performance during transient phases, although it has been used

successfully to predict performance in the steady-state phase of the system.

8

A candidate model and an analysis procedure are presented in this report.

Given that a multicomputer system is designed to comply with the

ATAMM design guidelines [8], and that a fault (death of a computing

resource) occurs during its normal steady-state operation, a model and an

analysis procedure are.proposed as candidates to predict the performance

bounds of the system during its recovery and restoration phases.

Furthermore, the system requirements to comply with such bounds can be

assessed and system design specifications can be gathered. The bounds are

time to recover from the fault (trec), time to restore the system (tres), and

permanent or temporary delay of the output from its expected time.

The time to recover from the fault is related to the time to restart the

process or node that was not completed due to the fault occurrence. The

time to restore the system is the time from when the error is detected to

the time that the system reaches the target operating point. In the case of

the experiments presented in this report, the target operating point is the

same as the operating point before the fault. The bound of temporary or

permanent delay injected to the system output is related to the bound of

time to restore the system. If the system is not able to restore to the target

operating point then the delay injected to the system is permanent and vice

versa.

1.5 Report Organization

The fundamental model and analysis procedure along with the

necessary theoretical background are presented in Chapter Two. This

model addresses the introduction and propagation of delay in the system

under study. An overview of the implementation of an ATAMM operating

system with the fault-tolerant attributes to test the model developed in

Chapter Two is explained in Chapter Three. This chapter is used to

expound the implementation of an ATAMM Multicomputer Operating

System (AMOS) in the IBM Generic VHSIC Spaceborne Computer (GVSC).

Experiments to demonstrate the use of the model and the validity of the

ATAMM implementation are presented in Chapter Four. These

experiments are intended to compare the experimental results against the

calculated results obtained according to the procedures developed in

Chapter Two. Chapter Five contains conclusions and suggestions

concerning future research.

10

CHAPTER TWO

THEORY

The objective of this chapter is to extend the ATAMM model to

investigate the transient behavior a multicomputer system subject to a

fault and during the recovery process. Of interest is how delay introduced

by a node is propagated in the graph. When a computing resource fails

while working in a node in the graph, it is detected and the node is

reassigned to a healthy computing resource. The effect of this error

detection and reassignment of the node is to delay the output from the

faulty node. The propagation of this delay through the graph is examined

and a model is developed in this chapter. The extension to the ATAMM

graph model to study this behavior is presented in Section 2.1. Node model

definitions are presented in Section 2.2. The fault node model to describe

the introduction of delay in the graph is developed in Section 2.3. The

delay propagation model to describe how the delay propagates in the graph

is developed in Section 2.4. Section 2.5 contains general purpose

definitions. A summary of the chapter is presented in Section 2.6.

11

2.1 Graph Model

The ATAMM model consistsofthe Algorithm Marked Graph (AMG)

and the Computational Marked Graph (CMG). These graphs describethe

data dependency ofnodes in an algorithm. The AMG isa dataflow

descriptionof the algorithm and does not show controlflow. The CMG

describes both data flow and control flow [6]. The CMG is constructed with

the use of another graph that describes the internal behavior of a node in

the AMG. This graph is called the Node Marked Graph (NMG).

The AMG is described by two sets, a set of nodes N and a set of

directed edges E. The set of nodes N is

N = {hi}, fori = 1.. k

where k is the number of nodes in the graph. The set of directed

edges E is

E = {eij}, for ij = 1..k

where eij is a directed edge from initial node i to terminal nodej.

The CMG is constructed using the AMG and the NMG according to

[4], [7], and 1. These graphs are used to obtain performance bounds as

explained below.

There are two performance bounds derived from this graph model.

These bounds are the minimum inverse of the system throughput or

1j.W. Stoughton,R. P_ Mielke,S.Som, R. Obando, M. R. Malekpour, R. L.Jones,

BrijMohan V. Mandala, "ATAMM Enhancement and MultiprocessorPerformance

Evaluation,"NASA LangleyYear End Revortfor1990,Grant NCC1-136, pages

33-38,June 1991.

12

Lower Bound of Time Between Outputs (TBOLB) and the minimum system

delay or the Lower Bound of the Time Between Input and Output (TBIOLB)

[5]. The first bound Time Between Outputs (TBO) refers to the minimum time

between outputs at which a given algorithm graph is capable of working. This

indicates the minimum Time Between Inputs (TBI) at which a graph should be

driven. This bound is calculated by finding the circuit with the largest amount

of time per token. This is done by first finding all circuits in the CMG. For

each one of the circuits, the execution times in the circuit are added, and the

sum is divided by the number of tokens in the circuit. The second bound

(TBIO) refers to the time that a data packet or input takes to be transformed

by the algorithm and reach the output sink. This bound is calculated by

finding all paths from the source to the sink and adding the execution times in

each one of them. The path with the largest time defines TBIOLB.

An AMG shows the data flow and data dependency among the

computational nodes but it does not explicitly show data packet

interdependency. Every node processes every input datum that is presented

for every data packet that is input to the graph. The AMG explicitly

demonstrates the data dependency of one data packet; it displays the different

stages or transformations a data packet goes through until it is delivered at the

sink node. Ideally, each node finishes executing in a fixed amount of time.

However, in the event of a node requiring a longer amount of time, a transient

occurs.

13

2.1.1 XAMG

The following graph model is an extension of an AMG and is called an

eXtended Algorithm Marked Graph (XAMG). This graph model uncovers

the relationship that exists between data packets. Every node in this

graph is associated with one and only one data packet. The XAMG can be

obtained from the AMG by indexing the nodes of the AMG with the data

packet number.

The XAMG is described by two sets. The set of nodes N x and the set

of directed edges E x. The set of nodes N x is

NX={np,i},forp = 1..l,i : 1..k,

where l is the number of data packets and k is the number of nodes in the

set of nodes N that describes the AMG from which the XAMG is obtained.

The total number of nodes in N x is the product of l and k. The set of

directed edges E X is

E x ={ep,,,,j},forp,n : 1..l;i,j = 1..k

where the edge ep, i,n, i is a directed edge from node np, i to node nnj.

Therefore, node X in the AMG becomes an array of nodes indexed by

the data packet number i, so Xbecomes X i for all i in the XAMG. To

illustrate this, the AMG in Figure 2.1 can be transformed into the XAMG

in Figure 2.2. The latter graph shows the relationship between the data

14

packet i and the data packets i + 1, i + 2, i + 3 and so on.

The XAMG model requires the redefinition of some measures of the

AMG such as TBIO and the addition of new measures relating to the input

and output of different data packets. These measures will be presented in

Section 2.5. One feature worth mentioning here is that there are no

directed circuits in the XAMG, therefore most of the analysis is carried out

on directed paths instead. In fact, every circuit in the AMG unfolds as a

path that goes from data packet to data packet.

2.1.2 XCMG

An immediate extension of the XAMG is the XCMG (eXtended

Computational Marked Graph). The XCMG is an unfolded view of the

CMG and it provides a way to account for interpacket data and control

relationships. The XCMG does not have directed circuits as the CMG does.

For example, the directed circuit in every computational node of a CMG

does not exist in a XCMG. This directed circuit is transformed into a

directed path from the write transition for node X, data packet i to the read

transition of node X, data packet i +1, and so on. The XCMG is obtained

similarly as in 2 The XCMG related to the XAMG in Figure 2.2 is shown in

Figure 2.3.

2j. W. Stoughton, R. R. Mielke, S. Sore, R. Obando, M. R. Malekpour, R. L. Jones,

Brij Mohan V. Mandala, "ATAMM Enhancement and Multiprocessor Performance

Evaluation," NASA Langley Year End Report for 1990, Grant NCC1-136, pages 33-

38, June 1991.

15

2.2 Node Model Definitions

Of interest is the development of fault models for a system designed

with the ATAMM strategy. These models can be used to analyze the effect

of a fault on the system at run-time. The only fault that is considered in

this analysis is the death of a resource during the execution of a node.

Consider a node in an XAMG with index n in data packet p. This

node has two sets of edges associated with it. These sets are the input edge

set Ip, n and the output edge set Op, n, where and are given by

Ip.,, = {e, is an input edge to Np. n }

and

0_.,_ = {e_ is an output edge to Np,n }

respectively. Assume that the read and write times are zero, so that the

only time associated with a node is the process period Pp, n, which is the

time necessary to execute the node.

When fired, node rip, n encumbers tokens from all edges in Ip, n and

enters the execution stage of the node. The time when this is done is

represented by the fire time fp, n. The node np, n deposits tokens in all edges

in Op, n after the execution of the node has been completed. This is

represented by the deposit time dp, n. Byusing the ATAMM design

16

procedure it is possible to ensure that nodes fire as soon as all edgesin Ip, n

have tokens.

input edges.

f_,,, = max{d_,,,d_,j,d .k,... },

Thus the node is enabled when the last token arrives at the

The fire time can be calculated by

(2.1)

where dq, i, dq,j, dq,k,.., are the deposit times of the nodes nq, i, nq,j, nq,k,...

which are the predecessor nodes to np, n.

Each node rip, n in the graph has a predetermined execution time Pp, n"

Therefore, the deposit time dp, n can be expressed by

dp,,, = fp,, + Pp,n- (2.2)

The max{} operator in the expression for fp, n indicates that tokens in

the input edges may stay in the edges for a finite period of time before they

are encumbered. Only the last token to arrive will stay for zero amount of

time in its edge. The time a token stays in an edge can be represented by

"_q,m,p,n" This expression represents the lifetime of a token in the edge

between node rbp, n and node nq, m and is calculated by

T_q._,,,.n =fp,_ -dq, m . (2.3)

17

2.3 Fault Node Model

In a very broad sense, computing systems may be classified into two

categories. There can be systems without fault detection and there can be

fault-tolerant systems, or systems with an error detection mechanism.

When a computing resource fails while executing a node, the node is called

faulty node. A faulty node requires different models for these two types of

computing systems mentioned above.

In a system without fault detection, if a resource is executing a node

and it fails prior to the deposit of the node output tokens, the process

period Pp, n can be estimated to be infinite. Thus, ifPp,n is infinite, then

dp, n is also infinite. Since there is no fault detection in the system, this

event of a resource failure will lock the graph because successor nodes to

np, n will not receive input data. Hence, the model for a faulty node in a

system without fault detection is straightforward: the process period Pp,n

for the faulty node is estimated to be infinite.

In a fault-tolerant system, if a resource is executing node np, n and a

failure occurs prior to the deposit of the node's output tokens, it is desirable

that the process period Pp,n and hence dp, n be finite. Since this is a fault-

tolerant system, a fault detection mechanism is required to flag the fault

with attendant application of fault-recovery techniques. One of these

techniques is rollback which involves the restarting of the task that failed

15

to complete. Another technique is to discard the process of that task and

declare a failure of the entire data packet. In this research it is desired

that there is to be no lossof data, thus only the first technique is of

interest. Once a node is restarted with a healthy resource and assuming

there are no more faults in the system, the node will complete its process in

time which will exceedthe original process period Pp, n" The resultant time

can be calculated by adding a delay to the original process period Pp, n"

This delay is represented by _Pp, n, and it is defined by

A .o = - p:., (2.4)

Assuming there are no faults in a system, the fire time f*p,n and

_e

deposit time d p,n for every node may be determined. However, if there is

a delay in a node, i.e., it is a faulty node, there is a difference between dp, n,

with a fault, and d p,n, without a fault This difference is called the delay

to finish np, n, (Adp, n), where

(2.5)

In conclusion, a faulty node can be modeled by expressing its deposit time

by considering the delay added to its execution time. Therefore a faulty

node can be characterized by the delay h_p,n-

19

The delay to fire node np, n may be defined by

/v =:,-:;,. (2.6)

If there is no delay intl'oduced in node rip, n, Adp, n can be calculated by

or

/k d =A' (2.7)
p,n p,n "

Therefore, a node that does not introduce any delay propagates the delay

that is applied to the firing of the node.

If a node introduces a delay APp,n in the process, then the delay to

deposit Ad, n is

or

A =A: +A"
p,n p,n p,n _

(2.8)

where Ap_n is the delay introduced in the process time.

The general assumption made in the treatment of faults in this

document is that there is only one fault at a time. This precludes the

possibility of 0 </_:p,. when /_:p,. </_,. Therefore, for a node that

2O

introduces a delay, the delay to deposit is restricted to

Ad,n = A_,n- (2.9)

The node in which the delay is introduced is called the delay generator

node where

A ,,o>A'p,n (2.10)

and any other node is a delay propagator node,such that

Ad =A'
p ,rl p ,n "

(2.11)

2.4 Delay Propagation Model

Without considering the loss of the resource, the only damage

introduced in a system after a fault is the delay Ad, n. Although this delay

may be considered local to the node np, n, it may also affect other nodes in

the system. For example, if dp, n determines when nq, m fires, then a delay

in dp, n may cause a delay in the firing of nq, m. It is important to consider

how delay introduced by a faulty node propagates in a graph. A model of

delay propagation in a graph is presented in this section.

2.4.1 Fire-Equivalent Node Model

A fire-equivalent node model is developed in this section to facilitate

modeling of delay propagation through directed paths. Consider a node

21

np, n with one input edge on the directed path of interest.

the time to fire this node is

[_,_ = max{d',,d'j,d'o,... }.

Without a fault,

(2.12)

_t

It is assumed that only the edge associated with d ¢i is in the directed

path of interest. By the properties of the max{} operator, the set of input

edges Ip, n can be partitioned such that

[;,_ = max{d',,,max{d'.j,d',h,...}}

-_max{ "
qi" qx

(2.13)

(2.14)

where

d'_,, =max{d'_,_,d'o,k,... }.
(2.15)

This allows the time to fire the node to be decomposed into two terms. One

term representing the directed path of interest and another representing

the remaining input deposit times by the maximum of predecessor nodes

deposit times. In the case of a fault in the path of interest, let

SO

= d*f_,._ max{d,.,, ,._}

dq, i >- dq, i ,

(2.16)

where

f p,,, >- f _,n (2.17)

22

Thus the time to fire a nodeon a directed path from the faulted node is

potentially delayed.

2.4.2 Delay Propagator Nodes and Delay Absorbant Edges

How delay is introduced in a system is discussed in Section 2.3. It has

been shown that the simplest element that propagates delay is a node.

This section is used to present how an edge and a node propagate delay. It

is shown that whereas a node propagates delay, an edge may absorb all or

part of the delay introduced or propagated by a predecessor node. In

Section 2.4.2, it is found how delay is propagated through the graph. These

developments eventually are extended to the entire graph in the next

sections.

It has been defined that if a delay propagator node rip, n is such that

= (2.18)

then, the delay to deposit can be expressed by

=r,.o- r;.,. (2.19)

Using the concept of fire-equivalent node, this equation can be transformed

into

(2.20)

Recall that the terms with * denote times that do not change between both

estimated and actual transition times.

23

By the properties of the max{} operator, the term fp, n can be brought

inside the max{} term, so that

&o =max{<,,-r;,o,a;,_- r;:_}. (_.2_)

Transforming only the left term in the max{} operator:

&. =,r,a_{<,-_o_{<._,<._},<,,-r;.,}
= max{d,., +min{-d'_.,,-d'_.,},<.,-[;,_}

= max{min{d,a-d'_.,,d,.,-d'_.,},d'_._ - [;._}

=maxTmin{A_.,,A_,, +d'.,-d'_,.},d'_.. -f:.}

= max{/_{,,+ min{O,d'q,,- d'q,x },dl,,_ - f_.,, },

yielding,

= {A{ -max{< -d_,,,O},d_..- f_'.}A_,,. max ,i a

Solving equation (2.22) requires considering two cases.

Case 1:

a'...<<.,= ¢;.,,=<.,=<._-¢;'_<o= %,,.--o.

(2.22)

Thus,

A:.,,=mox{A_.,-mo_{<._-r:.,,O},<,_-r:,_}
=max{_=,-,,ax{<o,o},<o},

so that,

=A _
p,n q,i "

(2.23)

24

Case 2:

d;,x _- dq,i = f;,n _" dq,x :::_ d;,x - f;,n -- 0 ::2_ T_ q,l,p, n a O.

Thus,

A_,_ = max{A_q,i - {r; :,,o}}max ,,, - d ,0

so that,

(r; ") }Ad,,, max ,i ,,,= - * -dq, i ,0 (2.24)

If f[,n = d'q.i in equation (2.24), then

p,n q,i °

Hence, case 2 contains case 1 and the general result is Equation 2.24.

This equation can also be written in terms of the static token lifetime as

follows:

• }Adp, n ---- max ,i -- _q,i,p,n" 0 •
(2.25)

As it can be seen in this expression, the delay propagated by node

np, n can be less than or equal to the delay propagated by node nq,j. Thus

delay may be absorbed in between nodes or by the edges that connect them.

The delay that is absorbed is equal to the static token lifetime, "C*c_i,p,n, of

the edge. Therefore, the token lifetime may also be called the delay

absorption property of an edge.

25

2.4.3 Lifetime Equivalent Paths

The next step in understanding how delay propagates through

directed paths is to develop a model for two nodes in series. This model is

then generalized to an n-node series and the delay propagation model for

any directed path is presented.

Consider two fire-equivalent nodes nq, i and np, n connected in a

directed path as in Figure 2.4. Node nq, i is one predecessor to rip, n and the

only directed path between nq, i and np, n is one edge.

By the results of section 2.3.2 and by using Equation 2.24, the delay

to deposit Ad n is

-
a_,,, = max

similarly, the delay to deposit Adc_ i is

/_,i = max ' .

(2.26)

(2.27)

26

By substituting Equation 2.27 into Equation 2.26,

._rnax{/_,-(rnax{d'j,d:,}),0} (max{d',,d ° d" },_:,_ = rnaX_O . . . -d'_.j - , ,..}- q.,),

max At.j -(max{d'_._, d'_., } - d'_.j)-(max{d'_.,, d'_.x } - d'_.,),l

= max, -(max{d'_.,,d'_.,}-d'_.,) f

0

* *p t

0(max{eo,,e,

so that,

0 q'j * }
/_. - (max{ d; j , d:,y } - d;,j) - (max{ d;,i, d; , } - dq,i) .(2.28)A_.,, = max " ' "

Equation 2.28 may be rewritten in terms of the static token lifetimes

as follows

Ae,,n max ,i _q,J,q,,+ ,0 (2.29)
q,i,p,n

In conclusion, the two-node series can be reduced to a one-node path

where the token lifetime at the input of interest of rip, n is equal to the sum

of the token lifetimes of the two-node series. In other words, the new one-

node path is said to be lifetime equivalent to the two-node series.

A similar procedure can be carried out for three, four or more nodes

connected by only one directed path in series. It can be shown by induction

that a one-node path is lifetime equivalent to an n-node path if the edge of

27

interest to the node has a static token lifetime equal to the sum of all token

lifetimes of the edges in the path. This conclusion may be expressed as

follows. A node np, n connected to n-1 predecessor nodes in a series or chain

has a one-node lifetime equivalent path with

max /k_,j T

where

T, = static token lifetime of edge e_ e n - node path, and

/_._ = delay introduced at the input of the n- node path.

(2.30)

This set of edges is the only path from the node nq,j that injected the

delay Adqj to the node np, n. The delay propagation model for a directed

path was presented in the last section. This result holds only when this

path is the only path between the nodes nq,j and np, n.

2.4.4 Dominant Lifetime Equivalent Paths

The delay propagation model for a set of parallel independent directed

paths between nodes np, r and rip, n is developed in this section. The paths

are independent in the sense that there is no interconnection between them

except at the start and at the end of the paths. This discussion leads to the

definition of dominant lifetime equivalent paths.

28

Consider two nodes np, r and np, n that are connected by only two

lifetime equivalent directed paths as shown in Figure 2.5. Each one of

these directed paths contain only one node each, namely nq, i and nq,j.

Employing Equation 2.24 and considering the input edges from ha, i and nq,j

into np, n, the fire equivalent model becomes

[m rd 1 d"a:.. = max. A:,, -I, ax" t ,,,,a,.,,a,.= ¢- ,.,),
(2.31)

0

In the same manner, the expression for the delay to deposit Ad,i and

Adqj are, respectively,

{/k d -(max{d'_r,d'_ ,}-d'_,) } (2.32)
A _ = max ' " ' '

q,i 0 p,r

and

0 p,r " * }

A d -(max{dp,,,dq,z}-d;,,) ,
lX ,,=max

(2.33)

Substituting Equations 2.32 and 2.33 into Equation 2.31 the

expression for the delay to deposit AS, n is

max ' " °

0 p.r m ° "

A_._ ' . . • ° , , °max. max

0

29

Manipulating the internal max{) operators, the equation can be

transformed into

A_.r--(ma_{e;.r,<.,}- d;.,)-(ma_{<.,,<,,<..}- <.,),

A_,._:max A_ -(m,x(e:._,<._}-e:.r)-(max{<.,,<._,<..}-<._),
0

By further manipulation and extracting the common term Adr,the result is

o" • _ "" ,r ,r' ,r _}

[(max{d,,r,d'_.,}-d',,r)÷tmaxla¢.,, _,_, _..l- _"]'[I
A d _min_l . ."

=max . (max{d'q,,d'_,,d'_.}-d*_,) J' "Adp,n [_maxtdp,r,d;z}--d:r)'_-

(2.34)

This equation can be expressed in terms of the static token lifetime

Ad A d - min ,r,q,i q,i,p,n

.._ = max. p,r
_. p,r,q,i " ' "

0

(2.35)

It is indicated by this expression that the delay to deposit Adn can be

calculated based only on the delay to deposit Adr and the path with the

minimum total token lifetime. It is said that the path with the minimum

total token lifetime dominates the other path. In conclusion, the path with

the minimum total token lifetime is called the dominant lifetime

equivalent path.

3O

By a similar procedure, it can be shown that for k independent

parallel paths between nodes np, r and np, n, the delay to deposit Adp, n is

or

A _ -min T,: _, ... T,I _,= " " "
(2.36)

N p,rp,, = max
• J •

(2.37)

where T.id°rn is the static token lifetime in the edge e i, and edge e i exists in

the dominant lifetime equivalent path of the set of k independent parallel

paths.

2.4.5 Path Construction

Any loop-free network between two nodes np,,. and ltp, n can be

constructed be connecting or concatenating series of nodes or independent

series in parallel. This section is used to demonstrate this construction

method. By using this method any loop-free network between two nodes

np, r and rip, n can be reduced to a lifetime equivalent path (LEP). It will

also be shown how delay introduced at np, r is propagated to np, n.

31

2.4.5.1 Concatenation

Consider two lifetime equivalent paths LEP_ and LEP 2 with token

lifetimes 1:I and _2, respectively. If these two paths are concatenated,

foUowmg the procedure outlined in Section 2.4.3, it can be shown that the

resultant LEP c has lifetime _c,

1:c -- T, + 1:2

oncatenation of paths is indicated as follows:

LEPI: LEP2 =-LEPo.

It

is

can be shown that the concatenation operator (:)

associative, i.e.,

(LEP_: LEP2): LEP3 - LEP_:(LEP2: LEP3)

and, therefore, n number of paths can be concatenated and are lifetime

equi valent to a single path LEP c with token lifetime _c

i=l

where 1:i is the lifetime of LEP i.

32

2.4.5.2 Parallel Paths

Consider two lifetime equivalent paths LEP I and LEP 2 with token

lifetimes _I and 1:2, respectively. If these two paths are connected in

parallel, i.e., both have a common predecessor node and a common

successor node, following the procedure outlined in Section 2.4.4, it can be

shown that a resultant LEPp has lifetime l:p:

zp = min{'c,,,c2}.

Connecting paths in parallel is indicated as follows:

LEP 1 LEP e - LEP c

It can be shown that the parallel operatorll) is associative, i.e.,

(LEP_ LEP_) LEP_ - LEP_ I(LEP2 LEP_)

and, therefore, n number of paths can be connected in parallel and they are

lifetime equivalent to a single path LEPp with token lifetime

_ p = min{'cl,-c2,...,,G_ }

where _1 is the lifetime of LEP 1, "c2 is the lifetime of LEP 2, etc. It can also

be expressed as

LEPp = domLEP.

33

2.4.5.3 Distributivity and Commutativity

It can be shown that the concatenation operator distributes over the

parallel operator. Consider lifetime equivalent paths LEP 1, LEP 2, and

LEP 3 then

LEP_ :(LEP2 I[LEP_) - (LEP_: LEP_)]1(LEP_: LEP_)

and

(LEP_ LEP_): LEP_ -(LEP,: LEPa)[(LEP2: LEP_).

and

Both concatenation and parallel operators are commutative such that

LEP_: LEP2 - LEP2: LEP_

LEP 1 LEP2 =_ LEP2[LEP I

These properties stem from the properties of the operator '+' in the

concatenation operation and the operator minO in the parallel operation.

2.4.5.4 Identifying the Dominant LEP

By the use of these two operators, it is possible to identify the

dominant LEP between any two nodes np, r and rip, n in an XAMG. These

operators can be applied to sections of the network to reduce it to a single

edge representing the dominant LEP between rip, r and np, n. This is

34

demonstrated with a practical example as shown in Figures 2.6.a to 2.6.i.

Consider two nodes np, r and np, n connected by a loop-less network. This is

a subgraph contained in another graph where edges going out or coming in

are not shown for simplicity. The only directed paths between np, r and np, n

are the ones shown in Figure 2.6.a.

By applying the concatenation operator to the path that contains node

B, and to the path that contains node E, and applying the parallel operator

to node E results the graph as in Figure 2.6.b. Using the distribution of

the concatenation operator over the parallel operator to the paths that

contain the node A, it yields the graph in Figure 2.6.c. By applying the

parallel operator between node np, r and node C, the graph is transformed

as shown in Figure 2.6.d. By applying distribution of the concatenation

operator over the parallel operator to the paths that contain node C, the

graph is further reduced as shown in Figure 2.6.e. The application of the

parallel operator to the paths between the node np, r and node D yields the

the graph in Figure 2.6.f. By applying the concatenation operator to the

path that contains node D, the graph is transformed as shown in Figure

2.6.g. The application of the parallel operator to the paths between node

np, r and node F produces the graph in Figure 2.6.h. Finally the use of the

concatenation operator in the path that contains node F reduces the graph

35

as shown in Figure 2.6.i. It can be observed that the path with _k is

lifetime equivalent to the path between np, r and np, n with the minimum

token lifetime.

2.4.6 Alternate Method for Identifying the Dominant LEP

Another method to identify the dominant LEP between two nodes is

to identify the path with the largest sum of node process times. This

approach follows directly from the result of Section 2.4.5.4 and is developed

below.

Consider two nodes rip, r and np, n connected by a network. Let the

time interval between the output of rip, r and the output of rip, n be

represented by T. Any path k between rip, r and np, n must comply with the

following equation:

i)

where P_i isthe node process time of the ithnode in path k and "_ is the jth

token lifetime in path k.

Regardless of the path that is traversed, the addition of the node

process times and token lifetimes is equal to T, i.e., T is a constant. If the

dominant LEP is the path with minimum token lifetime, it can be

concluded that the dominant LEP is also the path with the largest sum of

36

node process times. This path is also known as the time critical path

between nodes rip, r and np, n.

In conclusion, the dominant LEP between np, r and np, n can be

identified by finding the time critical path between np, r and np, n.

2.5 Definitions

The subsequent definitions relate to the graph model in general.

They are used to aid the understanding of results in Chapter Four.

2.5.1 TBIOn, m

The definition of TBIO in the AMG is the time associated with the

path with the longest time between the input source and the output sink.

This is straightforward since there is only one source and one sink in the

graph. However, in the XAMG (XCMG), there are as many sources/sinks

as there are data packets. Therefore there can be many paths between

sources and sinks. If there are n number of data packets, there can be n

longest directed paths between source 1 and all sinks. To distinguish each

of these paths they need to be labelled according to the source and sink at

both ends of the path. This can be accomplished by subscripting TBIO

with the corresponding source and sink. That is, TBIOn, m is thetime

associated with the longest directed path between source n and sink m.

37

The original TBIO of the AMG then becomes TBIOi, i, i.e., the time

associated with the longest directed path between the source i and its

corresponding sink i.

2.5.2 CPn, m

The path that characterizes TBIO in the AMG (CMG) is called the

Critical Path (CP). The path associated with TBIOn, m is then called the

Critical Path between source n and sink m or CPn, m.

2.5.3 System Slack

The systems are assumed to work at TBI _ TBOns • Define the

difference between TBI and TBOLB as the system slack, o, where

= TBI - TBO_. (2.38)

2.5.4 TBIOLB(i,i+ I)

In the AMG, the token lifetime of the edges in the CP, the longest path

between the source and the sink, is zero. However, in the XAMG, that is

not necessarily true for all CPi, i+l, the critical paths between the possible

source/sink pairs. Since the actual value of TBIOi, i+ 1 may be affected by

the token lifetimes in the edges, there is the need to define a lower bound

for TBIOi, i+ I. The lower bound for TBIOi, i+ 1 is defined by TBIOLB(i,i+I):

TBIO _a,i+l _ = TBIO + TBOu_. (2.39)

38

The value for TBIOi, i+l in steady state is then

TBIOi,,1 = TBIO + TBI. (2.40)

By substituting TBI expressed in terms of the system slack, it results in

TBIOi#÷I = TBIO + TBO_ + _. (2.41)

By further combination of TBIO and TBIOLB, the final result is

TBIOi, i+1 = TBIO Lsei,i+l_ + _. (2.42)

In conclusion, the system slack _ is the total token lifetime in the

path CPi, i+ 1.

It can be shown that for an arbitrary value of k, TBIOi, i+k

TBIOi,_÷k =TBIOLs_,i÷k_ +k_, k = 1, 2, . . (2.43)

As a generalization, the total token lifetime in the path CPi, i+k is k times

the system slack _.

2.6 Summary

The graph model to investigate the transient behavior of a

multicomputer system has been presented in this chapter. The transient

of interest is that of the effect of a delay introduced into one of the nodes of

the algorithm graph due to a fault. The model has been shown to be useful

to study the propagation of delay through a graph. A measure of

39

importance has been the token lifetime to be found m the paths between

any two nodes connected by at least one directed path. The existence of

token lifetime in a given path between two nodes expresses the amount of

delay that such path is able to absorb. When there is more than one path,

there is a dominant path with respect to the token lifetime. This path is

called the dominant lifetime equivalent path between two nodes. Two

methods to calculate the dominant lifetime equivalent path were shown.

These methods are to be used in Chapter Four in the testing of the model

against simulated system behavior. Finally some definitions were

presented to help in the understanding of the graph model. Some of these

definitions refer to the extension of measures of the steady state analysis.

Others pertain only to the transient model and do not have application on

the steady state model. The results of this chapter present the usefulness

of the model to start investigating the transient behavior of a

multicomputer system designed with the ATAMM strategy.

40

crq

E_

0

or_ or_ Or_
0 0 0
e-- e- c--

L'D C1_ CD
O0
0
e.-
R

i,..a

0

O O O
i_1 lm • Im

o cD cD

a_

t_

E_

0

s_

X

Q

A q.i

Figure 2.4. Nodes Connected in Directed Path.

rd :._

J rd _

Figure 2.5. Nodes Connected Through Parallel Paths.

43

)_' D I

Figure 2.6.a Example of Graph Reduction.

Figure 2.6.b.

__-_ _,=1

Figure 2.6.¢.

Figure 2.6.d.

"t =3

- :_©
Figure 2.6.e.

44

f
't.,-1n p._,_'

Figure 2.6.f.

_,--4

_a=6

Figure 2.6.g.

"Cj=4

Figure 2.6.h.

Figure 2.6.i.

45

CHAPTER THREE

DEVELOPMENT

The theory to study the behavior of a multicomputer system in a

transient due to a fault is detailed in Chapter Two. This theory may be

exposed either by system simulation or by real system implementation.

One way to simulate a system is by using a general purpose computer.

This method should simulate normal operation of the system along with

failure of computing resources and the recovery and restoration of the

system. Real system implementation, on the other hand, requires more

sophisticated hardware since it is used to test real-time software. An

available hardware system to validate the theory is the Generic VHSIC

Spaceborne Computer (GVSC). The implementation of a system that

complies with ATAMM in the GVSC as well as its fault-tolerant features is

described in this chapter. The development of the ATAMM Multicomputer

Operating System is described in Section 3.1. The fault-tolerant system

phases are presented in Section 3.2. In Section 3.3 the operating system

additions to make the system fault-tolerant are explained.

46

3.1 ATAMM Multicomputer Operating System (AMOS)

One purpose of an operating system is to "allocate hardware resources

among tasks"[18]. The objective of this section is to identify the hardware

resources and the tasks in the system of interest. The system under

discussion is not a general-purpose computer but an embedded system for

apphcations such as control and signal processing, among others.

Therefore, this embedded system does not have all attributes of a general-

purpose computer. For example, an embedded system may not have

"human" users, i.e., the system processes a signal from a servo and passes

the results onto another system. Another attribute of the systems under

study is that they are real-time systems where the time to fulfill a service

request is as important as the data processing itself. These systems are

also multicomputer systems and, as such, impose another difficulty on

their design, namely how to obtain maximum system throughput.

Many computing systems have been designed from the point of view of

hardware needs. This perspective has imposed a handicap on the software

development for these systems. Software design around system

architecture in order to take full advantage of the system limits the

reusability of the software package. Often such software depends on a

given number of computing resources which are to be connected in a

certain fashion in the system. For example, if software is to be developed

for a hypercube computer, the software engineer considers the hypercube

47

connection not only a feature of the system but a requirement for the

software to work as desired. If the software is to be used or moved to

another computing system that is not a hypercube computer, most probably

the package will have to be rewritten and retargeted to the new machine.

On the other hand, there are computing systems that are designed

from the point of view of software needs. This perspective imposes

restrictions on the hardware field. Achievement of optimization in the

hardware is not easy since software drives the hardware design and

development. Such systems ensure that the software for which they are

designed run optimally. A typical example of this kind of system is a vector

processor or math processor. The disadvantage is that these systems are

highly specialized and all too often not reusable for another type of

software.

3.1.1 AMOS Overview

The purpose of AMOS is to take a multicomputer system architecture

and a software system, both independently designed, and create a common

interface between them. The objective is that the system architecture

should look optimally designed for the software system and the software

system should look optimally designed for the system architecture. The

AMOS operating system becomes a common ground for the hardware

designer as well as for the software developer.

48

The system architecture is the hardware factor in the overall system.

The different hardware elements of this system are the individual

computing resources, the communication channels and the memory

resources. These elements should be managed for efficient use in the

execution of the application program. The system architecture designer is

concerned with this set of components without necessarily knowing the

application software that will run in the system.

The algorithm graph is the software factor in the overall system. This

algorithm includes the graph node codeand the data interdependency or

connection between the nodes. For each graph that the system is expected

to run, there is a set of nodesand their interconnection to each other that

constitute the data path, along with the appropriate node codeto process

the data. The basic ATAMM system has the property that a node in the

algorithm graph becomesenabled when the following conditions are met:

all input edgescontain tokens (data or control), the node is available or not

busy, and there are empty places on the output edgesto deposit the output

data (seeFigure 3.1). The software application designer is concerned with

the logical interconnection of the nodes (processes)through data edges.

This concern refers to the data flow of the algorithm and not to how to map

the algorithm to a given architecture. This features an architecture that is

hardware transparent to the software designer.

49

One attribute that is highly desirable in systems design is the

effective use of multiple processors or computers in a systenL The AMOS

operating system becomes the multicomputer connection in that it

manages the interprocessor communications. Second, AMOS manages the

interprocess communications. Third, AMOS manages the communications

between the processes and the processors.

AMOS can be regarded as a two-way translator. It translates the

requests from the processes to the processors. One of those requests can be

"execute this node." It also translates the requests from the processors to

the processes. Again, one of such requests can be "code execution has

generated data." This two-way translation poses a challenge since the

entities that should communicate are vastly different. On one hand, the

processors are physical units and they can be defined and located in space.

On the other hand, the processes are abstract entities and they cannot be

defined in physical terms as are the processors. Recall that the processes

are represented by the graph and its data interconnections and the code

that should be executed. For the processors and processes to communicate

there is a need for a common medium and to address this need concepts are

borrowed from object-oriented programming (OOP) or object-oriented

systems (OOS). The following section is a very brief summary of OOP.

50

3.1.2 Object-Oriented Programming Paradigm

The object-oriented programming paradigm has grown in its

acceptance and application in the last few years. In simple terms, object-

oriented programming may be considered an extension of structured

programming and a programming philosophy in the sense that it imposes a

particular structure on the software development. This structure combines

data and code into one package where the code is optimized to manipulate

the accompanying data. Structured programming, the predecessor of OOP,

was developed with the idea of creating code that is generic enough to be

used in many applications. One disadvantage was that the code that was

generated was highly dependent on the data structure. If the data

structures had to be modified to enhance the capabilities of the system, the

routines that manipulated the data structures had to be modified as well.

Since the data structure was known throughout the program, all levels of

the software had to be modified also. The data dependency aspect can be

alleviated by using one of the attributes of OOP, namely, data

encapsulation. This is achieved by creating a more sophisticated data type

or data structure, one that contains not only the declarations of the

primitive data types but also the functions that directly manipulate such

data. These functions are called member functions, the data variables are

called data members and the whole unit is called a class.

An instance of a data structure is called a variable, but an instance of

51

a class is called an object, hence the name object-oriented programming.

An object is then an instance of a class and contains a set of data variables

and member functions that manipulate the data. According to good object-

oriented programming practice, only the member functions should directly

manipulate the data in the object. When a member function is called or

invoked in an object it is said that a message is passed to the object. This

message indicates the type of data manipulation that is requested, either

read, write or initialize a given data member. This allows for programs

that are object-oriented to be more generic in the data manipulation, since

only the object knows how the data is represented internally. A simplified

view of an object is depicted in Figure 3.2. These principles are used to

explain which of the features were borrowed from OOP and placed in

AMOS.

The data encapsulation concept may be used to isolate the details of

how a specific piece either of hardware or software is manipulated. The

AMOS operating system should not be unnecessarily involved with the

direct manipulation of either one or another. Instead of directly

manipulating the data that represents the graph, AMOS should send a

"message" to the graph requesting a particular service. In the same

fashion, AMOS should send a "message" to a computing resource to request

or assign a particular task. Changes in the internal behavior of any of

52

these objects, hardware or software, should not impact the general

behavior of AMOS. A set of messagequeues is implemented for this

purpose in AMOS, to isolate requests from one side of the system to the

other. The logical structure of AMOS is explained in the following section.

3.1.3 AMOS Organization

The AMOS operating system is targeted for a multiprocessor

environment, but the code may be used in a system with only one

processor. The system uses as many computing resources as the graph

requires for its designed operation. The status of the system at any

moment would be the status of the combination of all its computing

resources. This fact leads to an overwhelming task in explaining how the

system operates. Therefore, the point of view of the operation of a single

processor or computing resource is taken instead. An overview of the

resource logical structure is shown in Figure 3.3.

The different components can be divided into the following categories:

the message handler, the graph, the queues and the semaphore. The

message handler is the component that moves messages from one queue to

another. It may take a message from the "Enabled Nodes Queue" to a

resource "Public Message Queue". The graph contains the representation

of the algorithm graph to be executed in the system. A description of the

internal graph representation or data structure is irrelevant at this level,

although it is important to say that it contains information such as the

53

connection of the nodes, from where each node's input data are read, where

each node's output data should be stored and what code should be executed

with what data, among others.

The queues are the pipeline connection to hold the messages or other

information for the systems components such as computing resources and

the graph. They are the abstract means by which the hardware and

software components communicate with each other. Finally, the

semaphore is a logical variable which provides a means for arbitrating

access to the graph. The semaphore is used to permit access to the graph

since there may be multiple computing resources in the system, and for

redundancy purposes, a copy of the graph exists in each and every one of

the processors. Every time a message is to be handled that affects the

status of the graph, the semaphore should be requested. Only by

possessing this semaphore (setting the variable to true), is a computing

resource permitted to manage the graph and its queues. In practice, the

semaphore regulates access to the communications channel of the system,

and hence to updating the copy of the graph in each and every computing

resource. Because of the boolean nature of the semaphore, only one

computing resource can have access to the graph at a time.

The Enabled Nodes, Sources and Sinks queues are the means through

which the graph requests a service from the system hardware. The

Enabled Nodes queue contains messages which have all the information

54

that identifies an enabled node to be executed. If a message exists in this

queue, there is an associated node in the graph which is enabled and ready

to be executed. Similarly, the Sources queue contains all the sources, or

system inputs, that are available to the system and each source in this

queue has a variable with a time relative to the global clock. This time

indicates when that source is ready to be executed and input data is ready

to be brought into the system. The Sinks queue contains all the sinks, or

system outputs, that are ready to be executed. The Transition Firing

queue is the message input to the graph. This queue contains all the

transitions that should be fired in the graph. It is used to pass the

messages from the computing resources to indicate the activity that is

taking place with respect'to the nodes assigned to them. It is used to

update the graph and reflect the state of the data and nodes in the system.

The Private Message and Public Message queues are used by the

computing resources to receive messages. The Private Message queue is

used exclusively for private or intraprocessor messages. These messages

are written to and read by the computing resource itself. This is for

consistency so that the computing resource is message driven even if the

messages are written by itself. The Public Message queue is used

exclusively for public or interprocessor messages. These messages may be

written by any of the computing resources in the system, but they are only

read by the computing resource for which the queue is intended. A

55

computing resource needs to obtain the semaphore to send a public

message, even ff it is targeting its own queue.

The Available Resources queue contains the ID's of all computing

resources that are available for executing nodes in the graph. Every time a

computing resource starts executing a node, its ID is removed from this

queue. When the node is finished, the computing resource ID that

executed the node is placed at the bottom of the queue. When an enabled

node is removed from the Enabled Nodes queue, it is assigned to the

computing resource that is at the top of the Available Resources.

3.1.4 AMOS Messages

The Service Messages queues are used to communicate messages to

and from the outside world. These are messages that are used for testing

purposes and to change certain parameters in the system. The messages

can be written or read only by the computing resource that possesses the

semaphore.

The messages that are passed among the elements in the system can

then be classified into private and public messages. These messages are

tabulated in Table 3.1. A brief explanation of the purpose of these

messages follows. The message "None" is used to describe when no other

type of message is found in the private or public message queues. This

message is returned as the default message from the queue message

56

reader. The message"Register" is used to inform the system that a

resource has becomeavailable for normal use. This initializes the private

and public queues of the computing resource and pushes the computing

resource ID into the Available Resourcequeue. The message "Fire"

indicates that a node has been fired, that it has started the processing of its

input data. The message"Data" indicates that a node has finished its

processing and has deposited its output data. The message"Self-Test"

indicates that the computing resource should start the self test routine.

This requires that the computing resource be removed from the system in

case it does not return from the self-test routine. There are more

parameters in a messagethat are not shown in Table 3.1 and are not

relevant to this overview.

Message

None*

First Parameter

N/A

Second Parameter

N/A

Register* ID N/A

Fire** Node Color

Data* Node Color

Self-Test**

* Private Message

** Public Message

Pass/No Pass N/A

Table 3.1. AMOS Messages.

57

3.1.5 State Diagram

The behavior of any of the computing resources, being a finite-state

machine, can be described using a state diagram. This diagram is depicted

in Figure 3.4. The states are connected by arcs that indicate the conditions

or "messages" by which the computing resource goes from one state to the

next. The following is a brief description of the states of the diagram. The

state "System Init" is the state where the resource "registers" itself to the

system by pushing its ID into the Available Resources queue. The state

"Graph Init" is where the graph is initialized for processing, all initial

tokens are placed in the appropriate data edges and the state of the graph

is brought to its initial conditions. The state "Idle" is where the computing

resource reads its own message queues. According to every message read

from the message queues, the computing resource moves to another state.

The message "None" takes the computing resource to the "Bus Mgt" state

where it scans the different graph or system queues, Available Resources

queue, Sources queue and Service queue. If any of these queues is non-

empty, the computing resource tries to capture the semaphore. If it

succeeds, it moves onto the "Graph Mgt" state to carry out the duty

indicated in the non-empty queue. If it fails, it goes back to "Idle" and

starts the process again. The message "Fire" takes the computing resource

to the state "Exec" where it will execute the appropriate node on its input

data. The message "Data" indicates to the computing resource to jump to

58

the state "Bus Mgt." In this state it does not query the queues, instead, it

simply tries to capture the semaphore. If it succeedsin capturing the

semaphore, it goesonto the "Graph Mgt" state, otherwise it goesback to

"Idle" and tries again. The "Self-Test" messagetakes the computing

resource to the "Self Test" state. In this state, the computing resource

executes a predefined self test program or routine. If the computing

resource passes its own test, it "registers" again to the system. If it fails, it

does not return to the system. Instead, it is considered a malfunctioning

computing resource and is not allowed to grab the semaphore anymore.

3.2 Fault Tolerance Scope

A fault-tolerant system is such that the occurrence of a fault does not

lead the system to failure. This means that the system should be able to

deal with a well-defined class of faults. Anderson and Lee [19] describe a

suitable collection of elemental phases to provide fault tolerance to prevent

faults from leading to system failures. These phases are: error detection;

damage confinement and assessment; error recovery; and fault treatment

and continued system service. The succeeding sections are used to describe

these phases in somewhat more detail.

3.2.1 Error Detection

The first phase in a fault-tolerant system is error detection. Although

a fault cannot be directly detected by a computing system, the

59

consequences or effects of such an event can be tracked. After a fault has

taken place in a system, the system eventually enters an erroneous system

state. It is this erroneous state that can be detected and used to raise a

system exception. An erroneous state is a state that will lead to system

failure if it remains undetected and no action is taken to return the system

to a valid state [20].

Measures and mechanisms need to be incorporated in a system for

proper error detection. Measures for error detection are system

components that help convey the necessary information for error detection.

Mechanisms are actual implementation techniques that use such measures

to raise exceptions in a system when an error is detected. The error

detection measures for a "computer system can be broadly classified into the

following categories: replication checks; timing checks; reversal checks;

coding checks; reasonableness checks; structural checks; and diagnostic

checks. Of interest in this section are the replication checks, the timing

checks and the diagnostic checks.

Replication checks are among the most effective measures although

they are also among the most expensive ones. As their name suggests,

replication checks reproduce certain components in a system so that there

are multiple copies of such components in the system. The results from an

operation with the replicated components are compared against each other.

Discrepancy in the comparison indicates that there is an error in the

5O

system. One common example of a replication check is Triple Modular

Redundancy (TMR). This check employs triplication of a subsystem to

provide detection of one or two errors in the subsystem. After a signal or

input is processed by these components, the individual results from each

replica are compared against each other. Any discrepancy in such a

comparison indicates an error in the subsystem. A more general example

of this measure is N-Modular Redundancy (NMR) which makes use of n

number of replicas instead of only three.

Timing checks are a class of limited replication checks. Limited

replication checks are checks that only verify the correct operation of

certain parts of a subsystem and from that limited knowledge the

operational health of the whole subsystem is determined. Timing checks

only provide verification that a certain component has accomplished an

operation or task within a time limit or restriction. They do not provide

information as to whether the operation is correct, reasonable or within

specifications. These timing checks are also known as time-out checks.

The raising of an exception due to a nonpassing timing check indicates that

a fault of some kind has taken place in the system. However, the absence

of such exception rising does not indicate that the system is fault-free.

Diagnostic checks are used primarily to test the behavior of

subsystems under known and controlled inputs. Under these conditions, a

61

subsystem is examined and a particular reaction or output is expected.

Implementation of these checks have a tendency to be expensive in terms

of resources and time required to execute them. Due to these

characteristics, diagnostic checks are better used as secondary error

detection measures.

Error detection mechanisms are largely dependent upon the measures

used in the system. For duplication checks, for instance, a simple

comparator may be sufficient to accomplish the task and raise an

exception. With the timing checks a timer may be adequate to achieve the

error detection. Finally, the diagnostic checks are heavily contingent on

the system in which they are to be employed.

3.2.2 Damage Confinement and Assessment

After an error has been detected in a system, the damage caused by

the fault needs to be assessed. The nature of the damage that is assumed

in this report is that of unprocessed data and the loss of a computing

resource. Since there is a time delay between the arrival of the fault and

the detection of an error produced by the fault, the existent damage may be

more than the error detection indicates. How the damage is assessed

depends on the considerations taken by the system designer on damage

confinement. Damage confinement relates to the restrictions imposed on

the information flow in the system design. How these restrictions are

62

fulfilled in the system directly affects the damage assessment after error

detection [21].

Damage confinement measures are meaningful for choosing damage

assessment measures for a system. The information flow in a system

relates to the system structure and a practical concept to structure the

system activity is the notion of atomic actions [24]. Atomic actions refer to

actions or activities in a system that are said to be not divisible into

smaller units. Examples of atomic actions can be opening a file, closing a

file, reading from a file and writing to a file. This concept of atomic actions

is applied at a given level in the system. It is clear that the atomic action

of opening a file could be subdivided into other atomic actions such as

allocate memory buffers for file information, fill the buffers with

information about the file, associate buffer with a handle, and so forth.

Whenever a set of atomic actions is defined it is understood at what level

they are defined and they are assumed to pertain to the same level of

complexity.

By defining atomic actions in a system, the designer breaks the

system down into modules which interact among themselves. When an

error is detected at run-time in a module it is possible to assume that the

fault has only affected the module where the error was detected. This is

true if the module has not interacted with any other module since it started

working. If the module has interacted with other modules prior to the

53

error detection, these other modules may be considered in error as well.

Structuring the system with atomic actions helps in the definition of the

damage assessment measures.

Damage assessment may be performed in two ways: staticassessment

and dynamic assessment. Static assessment pertains to the assessment at

design time, i.e.,the damage assessment isdefined a priori based only on

the knowledge of the system at design time. Dynamic assessment involves

the exploration of the system at run-time. This exploration or examination

of the system should determine the extent of the damage caused by the

fault and hence affectsthe recovery of the system.

3.2.3 Error Recovery

Error recovery techniques should be applied after error detection and

damage assessment. These techniques bring the system from an erroneous

state into a valid and healthy state. The damage that was caused by the

fault is removed and the system is brought into a state from which it can

continue functioning normally. Observe that the phases of error detection

and damage assessment are passive in nature, i.e., they do not affect the

state of the system but collect information about the erroneous state. On

the other hand, the error recovery and the fault treatment phases are

active in the sense that they do change the state of the system. The system

removes errors during the error recovery phase and faults during the fault

54

treatment phase. Error recovery is one of the areas where much research

has been done due to its importance in restoring a system from an

erroneous state [22].

Error recovery may be broadly classified into two categories: forward

error recovery and backward error recovery. Backward error recovery

attempts to reverse time in that it tries to restore the system to a healthy

state prior to the fault. An example is that of resetting the system,

knowing that the initial state was healthy. This is carried out disregarding

the current state of the system, in other words, the portions of the system

state that are not erroneous are not taken into consideration when the

state is restored. Forward error recovery encompasses all types of error

recovery that are not backward error recovery. Forward error recovery

techniques make use of the current state of the system and change those

portions that are erroneous in search of a valid and healthy state.

Forward error recovery is dependent on damage assessment whereas

backward error recovery is independent of damage assessment. The former

is not appropriate to handle any arbitrary faults although its

implementation may be simple since the information about the present

state is used to recover the system. The latter is suitable for handling

arbitrary types of faults but application of the techniques may be

complicated since the entire system state is to be recovered. The use of one

type of recovery instead of the other is up to the system designer and is also

55

dependent on the system specifications and the specific application.

3.2.4 Fault Treatment and Continued System Service

After a system has undergone error recovery and has hence removed

all error from the system, it is necessary to identify the fault that caused

the erroneous state in the first place. Continued system service can only be

insured by removing the faulty component if it can be identified, otherwise

the fault may reoccur. This phase is partitioned into two stages, namely

fault location and system repair [23].

Once an exception has been raised due to an error, the error may be

removed from the system. The removing of the error does not necessarily

indicate where the fault is located. During fault location the system relies

on information provided by the error exception. The disadvantage is that

the mapping of faults to errors may be many-to-one. Many faults may

generate the same error making it difficult to identify the faults based

solely on the error detection and damage assessment. Diagnostic checks

may be used to help locate the fault more accurately but often by taking

more time in the process and making it more expensive.

The system needs to be repaired once the fault has been located. The

system repair is carried out by reconfiguration. The system is reconfigured

so that the faulty component is not allowed to infuse any more faults in the

system. There are three kinds of reconfigurations: manual, dynamic and

66

spontaneous. The manual reconfiguration requires external or human

intervention in all stages of the reconfiguration. The dynamic

reconfiguration is accomplished by the system in response to external

signals. The spontaneous reconfiguration is doneby the system under the

control of the system itself. The last two kinds of reconfiguration are the

most expensive and difficult to implement and are reserved mostly for

applications where there cannot be operator intervention.

3.3 Fault-Tolerant AMOS

The goal in designing AMOS with fault tolerance capabilities is to be

able to recover from the death of a computing resource while executing a

node in the graph. Death of a computing resource is defined as the state

where the resource does not finish executing the task that was assigned

and hence does not report back to the system. In the succeeding sections

the development of each of the fault tolerance phases with respect to

AMOS is presented.

3.3.1 Error Detection in AMOS

Replication checks are inherently expensive. They require the use of

system resources as backups in case of faults. These checks are used in

AMOS only for the implementation of Triple Modular Redundancy (TMR).

The employment of this technique is at the graph level where nodes are

triplicated and their outputs are voted upon when read on the successor

57

nodes. At the AMOS level there is basically no intervention in the process.

The triplicated nodes are treated as any other node in a non-replicated

graph. The voting is performed in the node shell or just prior to calling the

node procedure code. This information is included here for completeness

only and it does not directly affect the detection of the death of a computing

resource in the system.

Timing checks on the other hand are relatively inexpensive in terms

of system resources. The system resources are used only if an error is

detected and therefore the use of timing checks is very attractive to the

system designer. Among the input variables of the ATAMM design

procedure is the knowledge of execution node times. These node times can

be used to time the nodes that are executed in the system and serve as as

time-out limits in timers for error detection. If a computing resource does

not complete the execution of its assigned node within the time limit, an

error exception is raised and proper action is taken. The following

paragraphs contain a description of how the timing checks are performed.

If timing checks are fulfilled by hardware timers, the system

hardware would limit how many nodes can work concurrently. Therefore

timing checks are carried out in AMOS by the use of a software timer

queue. A timer queue is defined as a queue that stores integers sorted by

magnitude. The sorting order requires the head of the queue to be the

lowest number and the tail of the queue the largest. Every time a node

68

gets assigned to a computing resource, the global clock is read and the node

execution time is added to it. This time value indicates when, with respect

to the global clock, the associated node is expected to be completed by the

computing resource. The value is then inserted in the timer queue and

sorted accordingly. When the computing resource concludes executing the

node, the associated queue entry is removed from the timer queue. This

timer queue can be checked by comparing the global clock against the the

head entry of the queue. If the global clock is less than or equal to the

head entry, the node is said to be within the proper time margin. If the

global clock is greater than the head entry, the node is said to be overdue

in its execution and an error exception is raised. The augmented AMOS

logical structure is presented in Figure 3.5. This structure has the new

timers queue incorporated in the system.

Due to the nature of the timers implementation, when the timers

queue is checked becomes important. Every time a computing resource

checks its private and public message queues and does not find a pending

message, the computing resource checks the timers queue. This

requirement takes advantage of the computing resource idle time.

Although this may be sufficientin many cases, there are instances when

the computing resources always find a message in their message queues

making itimpossible to check the timers queue. As a protection against

these possible cases, a second requirement isimposed in the system. Every

69

time a computing resource completes execution of a node, it checks the

timers queue. This requisite ensures that the timers queue is examined at

least a number of times equal to the number of nodes in the graph in a

TBO period of time. The augmented resource state diagram is shown in

Figure 3.6. This diagram includes the new state of "Timers Check".

When an error is detected in the process of timers checking, an error

exception is raised by the means of sending a new private message. This

message is the FAULT message as depicted in Table 3.2. This message

identifies the node that has not completed. Its information is important for

the next phase of the fault tolerance process, namely "Damage

Assessment". The Color attribute refers to the mode of operation, as in the

case of TMR, Duplex or Simplex. For allthe experiments presented in this

report, this parameter is a constant and hence irrelevant.

First Parameter Second ParameterMessage

Fault* Node Color

*Private Message

Table 3.2. New AMOS Message.

Finally, diagnostic checks are used to detect errors in different

components in the computing resources. These diagnostic checks take the

form of test programs and are only called upon when a computing resource

receives the public message SELF TEST. At this time, the computing

resource has been removed from the system and it returns back only on the

70

successful completion of its self-test. The message SELF TEST is

originated outside the system and it is injected as a service message. Most

of the times that a computing resource is removed, the system performance

degrades accordingly as explained in Section 3.3.4 when a computing

resource fails. Hence, this self-testing is reserved for use under special

circumstances due to its penalty on the system performance.

3.3.2 Damage Confinement and Assessment in AMOS

The graph model used in ATAMM is an ideal means for damage

confinement. The Algorithm Marked Graph (AMG) determines the data

flow and structures how information traverses the system. The input data

or data packets enter the graph by the source node. They are directed

through the nodes by data directed paths and leave the system by the sink

node. This arrangement allows the nodes in the AMG to be the system

atomic actions. Starting by its firing, a node does not interact with any

other node until it completes executing the code and delivers its output.

The damage is confined to a node if the fault occurs after its firing and

before its completion.

The system damage confinement lends itself to static damage

assessment. After the system detects an error, a computing resource

generates a FAULT message. This message contains the information

about the node that did not complete its execution. The system damage

71

may be assessedas the partially processeddata in the node since, after the

node firing, the assigned computing resource did not interact with any

other computing resource. The system uses this information in the "Error

Recovery" phase to remove the error caused by the fault.

3.3.3 Error Recovery in AMOS

The technique used for error recovery is a forward error recovery

technique. The data that is partially processed in the node that did not

complete is discarded. The node is considered as if it were not started and

gets reassigned to a healthy computing resource, in particular, to the one

at the top of the available resourcesqueue. The input data packet to the

node has been kept in a reserved cache in the event of a fault. This data

packet is then read by the newly assigned computing resource as the data

to be used in the execution of the node.

This technique is called "rollback" of the node. It basically restarts a

process anew, with all its conditions as they were in the first attempt. For

this reason, it may seem possible to classify the technique as a backward

error recovery technique, but the conditions that are restored pertain only

to the node and not to the entire system. The system is then placed into a

healthy state from which it continues to work and delivers its services.

3.3.4 Fault Treatment and Continued System Service in AMOS

72

The fault that is assumed is death of a resource during execution of a

node. The error detection technique chosen is sufficient to detect this fault.

Nevertheless, other types of faults may manifest in the same fashion. If

the code in a computing resource gets corrupted by any means, the

manifestation of this fault may as well be the same as the computing

resource death. This fact leads to the conclusion that the timing checks

used may detect errors caused not only by the death of a computing

resource but also by other types of faults that lead to the same erroneous

state. Regardless of this expansion in the types of faults that are covered,

the only assumption when an error is detected is that the computing

resource has ceasedto function. Trying to single out the specific fault that

caused the error is out of Zhe scopeof this report and out of the original

specifications of the system. Although it is possible to perform a detailed

examination of the resource that has failed, it is not exercised in the

current implementation of AMOS.

After the location of the fault, the resource that was originally

assigned to the node that did not complete is identified and its ID is

removed from the healthy resources queue. By doing so, the fault is purged

from the system and the computing resource cannot engage in any

interaction with the semaphore to gain accessto the graph. The computing

resource is not allowed to participate in any global updates to the system.

Under the ATAMM design procedure, a system has different

73

operating points that depend on the number of computing resources

present. Since the number of resources changes afar an error is detected,

an appropriate change in the operating point is carried out. This operating

point change is applied to the graph so that the graph works optimally

with the new number of computing resources. All operating points are

precalculated and downloaded along with the graph. There exists a table,

known as the operating point table, that contains all the necessary

information to take the graph from one operating point to another. This

process of changing the operating point is the last stage of the

reconfiguration required for the system to return back to service.

As the foregoing description suggests, the reconfiguration used in

AMOS is spontaneous as explained in Section 3.2.4. The system initiates

the reconfiguration afar the fault has been removed. It accomplishes the

reconfiguration prompted totally by the internal event of error detection. It

prepares the system to go back to service by using data available already in

the system. This feature is valuable in the design of highly reliable

computer systems. Hence it is desirable in such applications as space

probes, real-time control systems and deep-sea unmanned submarines.

74

3.4 Summary

This chapter has been used to present the development of the

multicomputer operating system AMOS. This development targeted the

IBM GVSC system and has been integrated and tested in the system[27].

This operating system is message based and highly modular.

An overview of the different phases for a fault-tolerant computer

system was presented. These phases are error detection, damage

confinement and assessment, error recovery and fault treatment and

continued service. AMOS was upgraded to a fault-tolerant system by

adding these phases to the system kernel. The addition was relatively

simple due to the operating system architecture and modularity.

75

Data _ Data
Inputs Outputs

Figure 3.1. An Enabled Node in a Marked Graph.

Messages
Code

Methods Output

Figure 3.2. Simplified Structure of an Object.

Service

L_I MessageQueue

Public

Mess_bge

Queue

Sinks

Mess_e

Handler

Figure 3.3. Resource Logical Structure.

Graph

76

EXEC

FAILURE

GRAPH
INIT

BUS
MGT

Re(urn

FIRE

IDLE

-TEST

SELF

FAILURE

Figure 3.4. Resource State Diagram.

FAILURE

GRAPH
MGT

7?

Service
Resource

Queue

.es_e I I

Private

Public

Message

Queue

Transition

Firinn

_Ik I Queu--

Nodes

Queue

So.rces Graph
Queue

Sinks

Message

Handier

Figure 3.5. Augmented Resource Logical Structure.

78

INIT

IN'rlEI[_

FAILURE

EXEC

GRAPH
INIT

BUS
MGT MGT

FAtLURE
FIRE

IDLE

SELF-TEST

NONE

SELF
TEST

TI M ERS
CHECK

FAILURE :ALLURE

Figure 3.6. Augmented Resource State Diagram.

7g

CHAPTER FOUR

EXPERIMENTS

This chapter is intended to demonstrate the application of the theory

developed in Chapter Two relating to the transient behavior of an ATAMM

system under a fault. In this chapter experiments are run in which delay is

introduced into the system by means of a fault. The evaluation is carried

out by both simulation and actual GVSC hardware implementation.

This chapter is divided into five sections. The simulation development

is explained in Section 4.1. Demonstration of the simulation is presented in

Section 4.2. Performance and behavior corresponding to the hardware

system when there are no faults introduced is presented. Two graphs are

examined to evaluate the steady state behavior of the GVSC and

simulation. The transient operation of the simulation is tested in Section

4.3 and compared to that of the hardware behavior. There is only one graph

used in the testing and there are three faults introduced in the system. The

simulation is also subjected to the same conditions and the output of both

systems are compared. The comparisons performed in Section 4.2 and

Section 4.3 are of two types: micro and macro. The micro comparison deals

with the ordering of individual events in the execution of the graph. The

8O

macro comparison uses the information at a more global level. This

comparison is at the level of TBO and TBIO for each data packet that the

systems generate. Section 4.4 is used to present twelve experiments which

are used to test the theory developed in Chapter Two. A comparison

between the theoretical and simulated experimental results is shown at the

end of Section 4.4. A summary of the chapter is presented in Section 4.5.

4.1 Simulation Development

The objectives of this section are to present the features of the

simulation for the GVSC AMOS. These features should help in the

simulation of systems that use the ATAMM design approach, in particular

the GVSC. A useful characteristic of the simulation is that of using the

same information input as the hardware system, i.e., the simulation and

the hardware use a common graph or information language. This helps to

quickly use an algorithm of interest to go from operating the hardware to

using the simulation. Along with this feature is the reporting of the system

actions in a tractable format by both the hardware and the simulation with

the prospect of comparison of both outputs.

Another feature of the simulation is that of investigating the behavior

of algorithms that require more computing resources than available on the

hardware. Under the ATAMM design procedures there can be graphs

optimized to work with many more computing resources than available in

81

an implementation of AMOS. Thus, it is useful to have a simulator that

does not have the limitations of expensive hardware. In a simulation, the

adding of more computing resources does not impose a high price tag; it

simply requires more computing power in simulating the large number of

necessary computing resources.

The GVSC AMOS code was required to be implemented in the Ada

language. This requirement did not necessarily imply that the unique Ada

language features or Ada run-time module had to be used. With this

prerequisite in mind, the original code was generated in ANSI Pascal. The

choice of Pascal derives from the fact that Ada is a superset of Pascal,

therefore, Pascal is a common minimum denominator between both

languages. Originally the code was translated into Ada as it was generated

or updated. Near the end of completion of the code, it was decided that only

the Ada version be used as the fully working code. This implied that all the

changes had to be made directly to the Ada version. As a by-product of this

arrangement, a working Pascal version of the system was available to be

used as an integral part of the simulation. This version was surrounded by

objects in the sense of object-orientation. The version was moved to Turbo

Pascal for Windows version 1.0 by Borland, which is a hybrid language. A

hybrid language, as it is the case here, is a procedural language with

object-oriented features.

Essentially the AMOS logic and data structures were preserved. The

$2

code that handles the messagepassing, the data structures and bus

management were left intact. The addition to the AMOS code has been the

simulation of a multicomputer environment in a single-processor system.

This simulation has been achieved by creating window objects that contain

the original AMOS code.These window objects are run one at a time by

executing a method by the name "run". The parameter that is passed down

to the method is the value of the global clock. The window object has the

same basic states as a computing resource and it moves from one state to

another according to internal parameters and the value of the global clock.

The internal parameters that are used are the estimated times that the

computing resource should spend in the different states and on the various

operations in the system. Examples of these operations are the bus request,

graph update and timers checking.

As part of NASA's integration of the AMOS code into the IBM GVSC

hardware, a build tool was developed.This build tool creates the graph

data structures as well as links the node codeto be downloaded into the

GVSC computers. This program takes a graph file and generates the

AMOS internal data structures that represent the graph in the file. It also

links the pieces of node codeto the data structures. The node code is not

necessary for a simulation, but the generation of the data structures is

extremely useful. The build tool source codehas been used to create a

modified build tool for the simulator. It creates the same data structures as

83

the original build tool does from the same graph file. This has become

another advantage of using the original AMOS code and helped the quick

development of a reliable simulator.

The main purpose of a simulator is to explore the behavior of a system

without using the system itself. Another use is to be able to change

parameters in the simulation, an otherwise expensive or lengthy process in

the hardware counterpart, and to observe the effect on the system output.

These benefits allow the simulation of large graphs and the examination of

the performance predictions derived from the ATAMM design procedure.

As a whole, the simulator has the potential to be used as a generic

simulator for a multicomputer system executing a version of AMOS. There

are parameters that are unique to the GVSC environment but they can be

adjusted to simulate other different environments. The types of systems

that can be simulated with this program are those that use the same

logical structure and the same state diagram as explained in Chapter

Three. This is considered potentially useful since currently there is only

one AMOS implemented in a multicomputer system.

One added use of the simulator was as a debugging tool for helping in

the hardware integration. During development, pieces of codewere

integrated one at a time. The codeto change the operating point was

integrated last. This code involves the changing of the graph at run-time

and therefore is critical to the fault tolerance phase of bringing the system

84

back to service.The simulator was used to debug the operating point

change code that eventually went into the GVSC system. The complexity of

debugging this piece of code in the target system would have been an

arduous and long enterprise because itis an embedded system. Debugging

the code with the simulator was user-friendly because itcould be run

instruction by instruction through the operating point change. A particular

feature was programmed for this purpose. The entire graph data structure

can be examined any time during simulation. Also a snapshot of these data

structures can be written or appended to a fileany time. With this

property, itwas possible to examine the graph data structures before and

after an operating point change was carried out. As a result of this

simulation process the code was highly debugged when itwas integrated

into the hardware system code.

4.2 Simulation Verification Experiments

The objective of this section is to verify the the correctness of the

simulation of the GVSC system running under normal conditions, i.e., no

fault is injected to the system. The verification process is carried out by

taking output from the hardware system and comparing it to the output

from the simulator running under the same conditions. Two graphs are

used to accomplish this task and are shown in Figures 4.1 and 4.2. The

first graph is referred to by the name of "Intermediate Graph" and the

85

second by the name of "Application Algorithm", as they were used

internally at NASA.

The process of comparison is accomplished by comparing the output

file of both hardware and simulation. The output files from both systems

are called fdt files because their filenames have "fdt" extensions. These

files contain the sequence of events that took place in the system while

executing an algorithm graph. These events refer to the firing of

transitions in the graph. A typical event is:

10904 Fire Task4 1 Procl 4.

The first number is the value of the system clock, in arbitrary units,

when the event took place. The "Fire" keyword is the name of the event.

The word "Task4" refers to the name of the node in the graph where the

event was carried out. The following number is the position or color

designation in a TMR configuration. The number "1" in all entries implies

simplex operation, which was tested herein. The word "Procl" identifies

the name of the processor that executed the event. The final figure

identifies the data packet number.

The events that concern the nodes are Fire, BeginNode, EndNode,

SentOutData and Data. There are other events that signal the request and

release of the communications channel. Other events are Fault and Retire

which are used in the process of detecting a faulty processor and restarting

the affected node.

There are two types of comparison, micro comparison and macro

85

comparison. The micro comparison is the comparison that is carried out at

the event level. The macro comparison is the one that is performed at the

performance level by comparing TBO and TBIO for each data packet. For

the micro comparison a program was written to compare two fdt files at the

event level. For the macro comparison, a dataflow Analyzer [28, 29] was

used to measure the system performance at every data packet.

The micro comparison is performed with the help of a C program that,

by using an fdt file as a reference and disregarding the time, reads an

event and tries to find the same event in the subject fdt file. For each event

in the reference file an output is generated that specifies the relative

position of the same event in the subject file. For example, if the event X

is found at position 52 in the reference file and the same event is found at

position 52 in the subject file an output of 0 is generated for that event. If

the event were to be found in position 53 then the output would be 1; if it

were in position 51, it would be -1 and so on. The range that the events are

searched on the subject file is limited to +5 for the first two comparisons of

nonfault conditions and to +20 for the comparison in a faulted condition. If

an event is not found within the specified range it is considered a miss. The

match of events should be perfect, i.e., everything, except the time, should

be identical. If an event is carried out in the reference file by processor 1

but on the subject file is carried out by processor 2, it is considered a miss.

A looser comparison is performed in the next section. The processor

87

assignment is made a "don't care" condition. The reason for such a

comparison is explained in the next section.

The macro comparison is done with the help of the Analyzer. This

comparison is performed at the performance level of the system for each

data packet. The measures used are TBO and TBIO for each data packet.

TBO is measured with respect to the predecessor data packet, i.e., the

difference between a data packet output time and the output time of the

predecessor data packet. The data is tabulated per data packet in an Excel

worksheet and graphed in an Operating Point Plane Figure. The

Operating Point Plane Figure has TBIO as the x axis and TBO as the y

axis. For each data packet a point is plotted at the intersection of the

values of TBO and TBIO. A line is traced from that plotted point to the

next point until all points are plotted. This Figure shows the dynamic

nature of the system as it moves from data packet to data packet in the

operating point plane.

4.2.1 First Comparison

The first comparison is performed using the Intermediate Graph of

Figure 4.1 as the testing graph. The fdt file from the hardware is named

interlc and the one from the simulation is named interlcs. There are only

281 events present and 6 data packets are output from the system. The file

interlc was generated when the IBM GVSC system was under test. The

88

simulation was set with the same graph and the same time values as the

hardware test. In the following sections the two comparisons are explained,

first the macro comparison and then the micro comparison.

4.2.1.1 Micro Comparison

In the micro comparison, the file interlcs was compared against

interlc. The results of the comparison are shown in Table 4.1 and a graph

of the data is shown in Figure 4.3. It should be noted that there were no

misses in the comparison. This means that all events in the reference file

were found in the subject file within the specified range of ±5 positions.

Almost 84% of the events were found in the same position in both files.

Approximately 10% of the events were found in the -1 and +1 positions.

Approximately 5% of the events were found in the -2 and +2 positions. In

summary, 99% of the events were located in the ±2 range. This comparison

indicates that the simulation is extremely close to the hardware in the

order that the events are generated. The difference lies in that for a given

set of events, they may take place in certain order in the hardware and in

another order in the simulation program. For instance, if two or more

nodes are assigned to computing resources in a graph update, the nodes

may start executing in a different order in time in the hardware as

compared to the nodes in the simulation program. This can be observed in

the fact that the differences are mostly in one or two positions.

89

4.2.1.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. Table 4.2

contains the performance measures for both files. Figure 4.3 shows the

plotting of the values of TBO and TBIO. It should be noted that for the very

first of the data packets the difference is large due to initialization

differences. The hardware was programmed to start injecting input data at

10000 clock ticks, whereas the simulation started at 0 clock ticks. After the

first data packet the largest difference is in the order of only 1.38%. The

comparison yields a great similarity of the output of the simulation to that

of the hardware.

After these two comparisons it can be seen that the simulation results

are in very close agreement to the results from the hardware. It does so at

both the micro and the macro levels for the intermediate graph. The files

have been generated without introducing any faults into the system.

4.2.2 Second Comparison

The second comparison is performed using the Application Algorithm

as the testing graph. The fdt file from the hardware is named aatest2 and

the one from the simulation is named aatest2s. There are only 224 events

present and 8 data packets are output from the system. The file aatest2

was also generated when the IBM GVSC system was under test. The

9O

simulation was set with the same graph and the same time values as the

hardware test. In the following sections the two comparisons are explained,

first the macro comparison and secondthe micro comparison.

4.2.2.1 Micro Comparison

In the micro comparison, the file aatest2 was compared against

aatest2s. The results of the comparison are shown in Table 4.3 and a graph

of the data is shown in Figure 4.5. It should be noted that there was only

one miss in the comparison. This means that of all events in the reference

file only one was not found in the subject file within the specified range of

+5 positions. Almost 96% of the events were found in the same position in

both files. Another 2% of.the events were found in the -1 position. Another

1.15% of the events were found in the -2 and +2 positions. In summary,

over 99% of the events were located in the +2 range. This comparison

indicates that the simulation is extremely close to the hardware in the

order that the events are generated.

4.2.2.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. Table 4.4 contains

the performance measures for both files. Figure 4.6 shows the plotting of

the values of TBO and TBIO. It should be noted that for the very first of

the data packets the difference is large due to initialization differences. The

91

hardware was programmed to start injecting input data at 10000 clock

ticks, whereas the simulation started at 0 clock ticks. After the first data

packet the largest difference is in the order of only 1.89%. The comparison

yields a great similarity of the output of the simulation to that of the

hardware.

After these two comparisons it can be seen that the simulation

generates very close results to the hardware. It does so at both the micro

and the macro levels for the intermediate graph. The files have been

generated without introducing any faults into the system.

4.2.3 Summary

The two comparisons presented in this section verify the simulation

program as a close simulation of a system with a multicomputer operating

system such as AMOS. The results were very close considering the many

variables that are used to represent the system's behavior. The maximum

difference was in the order of less than 2% in the macro comparison and

99% of the events were in the range of +2 in the micro comparison. This

only verifies the program for the normal conditions where there is no fault

introduced into the system during execution.

4.3 Fault Transient Verification

The objective of this section is to verify the simulation under transient

92

conditions as those encountered during fault detection and correction. The

procedure is similar to the preceding section. There is a micro comparison

and a macro comparison. The only difference is that there is only one graph

compared due to lack of suitable data at the present. The graph to be used

is the Application Algorithm and there are three faults introduced in the

system. The system executed for 35 data packets. The first fault was

introduced in node 2 at data packet 10. The secondfault was introduced

also in node 2 at data packet 15. The third and last fault was introduced in

node 1 at data packet 25. There were a total of 1167 events.

The original test was executed in the hardware to debug the code to

detect and recover from a fault. The original file is named aatest and the

simulation output is named aatests. The system had an optimized

operating point table that was generated by the team at NASA Langley

Research Center. Each one of the operating points was optimal for the

given number of processors present. The system underwent an operating

point change each time a resource failed and was removed from the system.

The system started with 4 resources and dropped down to 1 resource after

the third fault.

The simulation was set with the same graph and timing information

as the hardware. It also contained the same operating point table the

hardware had during the test. This test is more critical since it verifies the

transient behavior of the simulation.

93

4.3.1 Comparison

After the first fault, assignment of processors to nodes, in the

simulator, changed with respect to that in the hardware experiment. This

is not considered as critical since the assignment is performed dynamically

and on-line. It should, not make a difference which process gets assigned to

what processor since all processors are identical; it is only important that

the nodes get executed in the same sequence as in the hardware. For this

reason the micro comparison disregards the processor assignment and

seeks only the sequence of the firing of the transitions in the graph.

4.3.1.1 Micro Comparison

In the micro comparison, the file aatest was compared against

aatests. The results of the comparison are shown in Table 4.5 and a graph

of the data is shown in Figure 4.7. It should be noted that there were no

misses in the comparison. This means that all events in the reference file

were found in the subject file within the specified range of±20 positions.

Almost 39.5% of the events were found in the same position in both files.

Another 3.5% of the events were found in the -1 and +1 positions. Another

2% of the events were found in the -2 and +2 positions. Another 50.9% of

the events were found in the -3 position. In summary, 96% of the events

were located in the ±3 range. This comparison indicates that the simulation

is extremely close to the hardware in the order that the events are

generated in spite of the three transients introduced in the form of faults.

94

The difference is found mostly in the sections of events close to the time of

the faults. Accurate simulation of when the fault is detected and when

other processors finish is critical. While a processor is changing operating

point and removing the faulty processor from the system, other processors

may have finished executing assigned nodes. These other processors

cannot accessthe graph since the semaphore has been acquired by the

processor that responded to the FAULT message. Which processor grabs

the semaphore when it is released, affects the order in which the events are

registered in the system. These displaced events may upset the order of

the events on the simulation with respect to the hardware behavior. After

this phenomenon takes place, the difference will remain through the rest of

the execution since there is no resetting of the ordering while comparing

both files. This may be observed in Table 4.5, position -3.

4.3.1.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. Table 4.6 contains

the performance measures for both files. Figure 4.8 shows the plotting of

the values of TBO and TBIO. After the first data packet and the last data

packet the largest difference is on the order of only 3.47%. The comparison

yields a great similarity of the output of the simulation to that of the

hardware.

95

The simulation is verified by this comparison since, after being

subject to three transients, the performance measures are still in very close

agreement with the hardware. These tests are enough for the purposes of

this report because the Application Algorithm graph is the one to be used

in the section where the experiments are carried out. The simulation

follows the behavior of the hardware even under faults.

Figure 4.6 contains an additional set of points. These points are

identified as Theoretical. These points are the operating points

theoretically calculated to generate the operating point table that went

into the hardware and the simulation for these tests. As it can be observed,

the behavior of the hardware as well as that of the simulation deviated

drastically from the desirable operation. It is important to highlight that

this is a good example of the significance of the findings in this report. The

system did not operate as it was expected because it did not have the

means to absorb the delays introduced by the faults into the graph and

hence did not reach the target operating points. As explained in Section

4.4, there are ways to alleviate this anomalous operation and is

demonstrated with examples how the delay can be absorbed in the system.

It should be pointed out that in the examples in Section 4.4 there is no

change of an operating point to another operating point with less

resources. The operating point is maintained between faults to highlight

96

the effect of the delay introduced by the fault and the effect of the token

lifetimes in the graph.

97

4.4 Simulation Examples

4.4.1 Overview

The objective of this section is to present examples of a graph

undergoing a single fault, recovering from the fault, and continuing with

the execution of the algorithm. After the fault the system continues with

one less computer although at the same operating point as before. This

condition is used to isolate the effect of the lost of the computing resource

only. Starting and final operating points have the same values for TBO

and TBIO. The comparison of calculated and simulated results are

performed at a macro level, i.e., at the TBI, TBO and TBIO level.

Therefore, lifetime dominant paths are found by the means developed in

Chapter 2. The paths are found from the node where the fault occurs to

every single sink in the XCMG to calculated delay to fire the sinks. With

the values of the lifetime of these paths the values for TBO and TBIO for

every subsequent data packet are calculated. Since these computations are

rather involved to be presented in this section, an example is detailed in

Appendix A. All experiments were run under the same conditions and the

actual TBO and TBIO were retrieved with the help of the Analyzer. These

values are compared against the calculated values and conclusions are

drawn from the comparisons.

The graph used in the experiments is the Application Algorithm of

Figure 4.2. There are twelve experiments where the system is operated at

98

TBI = 7000 for the first four, at TBI = 6200 for the second four, and at TBI

= 8000 for the third four. A different node is made to fail in each one of the

experiments in the groups of four. Table 4.7 is a summary of the conditions

of all the experiments.

All experiments are run for thirty data packets and all faults are

injected at data packet ten. The system starts with seven computing

resources and there are only six left after the fault.An overview of the

experimental results is presented in a table in Section 4.4.2. For each one

of the experiments there is a chart showing the experimental values of TBI,

TBO and TBIO for each data packet. Also, a table is presented with

experimental and calculated values of TBI, TBO and TBIO, and the

percentage of error of the calculated with respect to the experimental for

each one of the experiments.

There are three comparison charts of all experiments with the same

input rate or TBI. These charts are placed after all the charts and tables

for the experiments. These comparison charts show the Operating Point

Plane of all four experiments with the same TBI. These figures show the

behavior of the system under the fault and the recovery process. There are

also comparison charts of all experiments with the same faulty node.

These charts present the individual data packets plotted in an Operating

Point Plane for the system.

99

The value of TBOLB of the system is 6200 which was found

experimentally. It was necessary to know this bound so that the system

would be driven at a higher or equal TBI. The resolution of the parameters

for source time in the hardware as well as in the simulation is in hundreds

of units. The actual value of TBOLB is between 6100 and 6200. Thus for

the purpose of these experiments TBOLB is considered at 6200.

The experimental value of TBIOLB of the system is 16650. The

amount of delay that is introduced into the system is approximately equal

to the process time of the faulty node plus 500. The 500 units extra is an

arbitrarily selected timeout delay that every node is allowed before it is

declared faulty. Thus the delay introduced by a fault at node 1 is 3500, by

a fault at node 2 is 8500, by a fault at node 3 is 6500, and by a fault at node

4 is 5700.

4.4.2 Experiment # 1, an Example

This experiment is explained in detail to show the general process

that was followed for each one the experiments. Although the actual

numbers may be different for each experiment, the procedure followed to

calculate the values of TBI, TBO and TBIO are the same. The tables in the

experiments contain the values of TBI, TBO and TBIO that were measured

with the help of the Analyzer for each data packet. They also contain the

100

calculated values for TBI, TBO and TBIO, followed by a percentage of

error of the calculated versus the experimental values.

In experiment #1, node 2 fails executing data packet 10 and

introduces a delay of 8500. As it can be observed in Figure 4.9, both TBO

and TBIO are increased for that data packet. After the data packet 10, the

system delivers outputs at a lower TBO (corresponding to a faster rate)

than the TBI that is being used in the system. This behavior continues for

6 data packets and the system returns back to a TBO equal to the system

TBI. From here on, this lower TBO is referred to by the name of recovery

TBO. This value of recovery TBO is a graph property which also depends

where in the graph the fault occurs. TBIO decreases on each data packet

by the difference between the system TBI and the recovery TBO. The

value of TBI is 7022 and the recovery TBO is approximately 5385 which

gives a reduction on TBIO of 1637 per data packet. This response may be

interpreted as the recovery process the system goes through to reduce the

delay introduced by the fault. Both TBO and TBIO eventually return to

the original values they had before the fault was injected since for the

initial and final number of resources the same operating TBI is used.

In order to calculate the values of TBI, TBO and TBIO, the paths

between node 2 and all sinks were identified and their token lifetimes were

computed. The value of TBI was estimated to be the mean value of the

experimental values of TBI. TBIO for each data packet was calculated by

101

first estimating the delay to fire each one of the sinks in the XCMG and

adding this delay to TBIOLB. The values of TBO were calculated by

finding the difference between the times when the sinks fired using the

first data packet before the fault as reference. An example of this

procedure is detailed in Appendix A. The experimental and calculated

values and the percentage of error of TBI, TBO and TBIO are tabulated in

Table 4.8. Discarding the error for packet one, the maximum difference is

about 1.46% and most of the values are below 0.5%.

4.4.3 Experimental Results

A summary of the experimental results is tabulated in Table 4.9 and

Table 4.10. Table 4.9 contains, for each one of the experiments, the node

that failed; the average value of TBI, the recovery TBO; the delay

introduced by the fault and the delay to the first output after the fault.

Table 4.10 contains, for each one of the experiments, the node that failed;

the reduction on TBIO per data packet; the number of packets the system

takes to recover; the value of a permanent delay after reaching steady

state; and the time to restore the system to the target operating point.

The recovery TBO values in Table 4.9 refer to the TBO at which the

system delivered outputs while it was recovering from the fault. After

faults at all nodes, except at node 3, the recovery TBO reflects

approximately the value of process time for node 4, which is 5200. This is

because the lifetime dominant path for faults at these nodes is the path

102

that traverses node 4 through several data packets in the XCMG. The

lifetime dominant path when node 3 fails traverses node 3 and the recovery

TBO is higher; its value is TBOLB.

The introduced delay, as shown in Table 4.9, is the effective delay

introduced into the system by the fault at the node. As can be seen, it is

approximately the value of the process time for the node that failed plus

500 units. Any difference can be attributed to the effective timeout at

execution time. It is possible that an error may have been detected but the

communications channel was being used at the time and the actual time to

operate on the graph may have been longer. This effectively adds delay to

the estimated time.

The column of first output delay in Table 4.9 reflects the delay on the

first data packet or the data packet 10 in which the fault occurred. In all

nodes and TBI, except for node 3, the first output delay is equal to the

introduced delay. The difference in the rows of node 3 is due to a token

lifetime of approximately 1800 units in the path from node 3 to the sink for

data packet 10. The theoretical value of this token lifetime in the path is

2000 units.

The TBIO reduction column in Table 4.10 indicates the amount of

delay reduction that is applied to the TBIO for each data packet while the

system is in recovery. This value can be calculated by subtracting recovery

TBO from TBI.

103

The column of recovery packets in Table 4.10 denotes the number of

packets that the system requires to reach the target operating point. This

target operating point is the initial operating point before the fault, i.e., the

same values of TBO and TBIO. For faults at nodes 2, 3 and 1, and TBI of

6236 there is no value in this column. This is because the system never

reaches the target operating point. Instead it reaches an operating point

with an offset in TBIO, hence a permanent delay in TBIO. The system

does absorb some of the delay that is introduced by the fault, but the path

that contains node 3 becomes lifetime dominant after a given number of

data packets. This number of data packets is expressed between

parentheses.

The column of permanent delay indicates the amount of delay that

exists in TBIO after the system has reached a steady state. Most of the

entries are zero, except for the related entries denoted by N/A in the

column of recovery packets.

The time the system takes to restore the target operating point is

indicated in the column of time to restore. The entries indicated by N/A

are the ones where the system never reaches the target operating point.

Instead the value between parentheses is the time the system took to reach

steady state.

As has been shown, the model can be used to predict the behavior of a

multicomputer system under recovery and restoration. The issues that

104

have been raised in the Introductionofthisreport can be addressed. These

issuesare whether a system fullyrecoverswhen itundergoes a fault;the

time it takes to recover (tre c) from the fault and to restore the system

(tres); and the existence of a permanent delay in the system after it reaches

steady state.

The data from experiments #2 to#12 are graphed and tabulated in

Figures 4.10-4.20and Tables 4.11-4.21in the restofthis section.The last

seven charts,Figures 4.21-4.27,are Operating Point Planes ofthe

experiments grouped by TBI or by faultynode. They serve to highlight

differentaspects of the system under study.

By observing these charts and tables,some conclusionsmay be drawn

that highlightperformance aspectsofthe ApplicationAlgorithm. The first

conclusionis that if

TBI > TBOLB

the system recovers from the faultand reaches the target operating point.

The token lifetimein the paths from the faultynodes to the sinks is used to

absorb the delay introduced by the fault.

Another conclusion isthat isif

TBI = TBOL_

the system may not recover from the faultand may not reach the

targetoperating point. Ifitdoes not reach the targetoperating point,there

105

is a permanent delay added to TBIO.

The value of the recovery TBO depends on the node that fails and not

on TBI. This value is related to the time m the nodes in the paths and not

to the token lifetime as it is m the case of the TBIO reduction. It may also

be observed that the higher the TBI, the faster the system recovers. This

information may be easily observed in Figures 4.21 to 4.27.

106

F_e 4.1.interme_at2 Graph.

±"J

Fi_e 4.2.AP pl_csti°nAl_Orithm Graph.

107

Positio

-5
-4
-3
-2
-1
0
1
2
3

4
5

Number Percent

0 O.O0%
0 0.00%

I

0 0.00%:
8 2.85%

18 6.41%
235 83.63%

11 3.91%
6 2.14%
2 0.71%

0 0.00%

1 0.36%

Table 4.1. Results of Micro Comparison #1.

Comparison of Hardware and Simulation #1

Intermediate Graph

90.00_
80 00_ _ t _

IReference file: interl c.fdt

I 5

TotAl # of misses - 0

Figure 4.3.Results ofMicro Comparison #I.

108

Packet l

1

2

3

4

5

6

Interlc

TBI TBO TBIO TBI

Interlcs

TBO TBIO

10258 16855 6597 351 6891 6540

3054 3019 6562 3012 2983 6511

3053 3050 6559 3042 3042 6511

3059 3061 6561 3027 3027 6511

3060 3058 6559 3042 3042 6511

3061 3063 6561 3027 3027 6511

Table 4.2. Results of Macro Comparison #1.

!8000

! 6OOO

! 4000

1200o

1o0o0

'!

8000
I

6000 !

[
40OO _

I

Operating Point Plane

Interm_iate Graph
Comparison # I

6000 6100 6200 6300 6400 6S00 6600 6700 6800 6900

TIO

7OO0

Figure 4.4. Results of Macro Comparison #1.

109

ii

Positio

-5
-4
-3
-2
-1

0
1
2
3
4
5

i

Number Percent

0 0.O0%

0 0.00%
0 0.00%

2 0.89%

5 2.23%

215 95.98%
0 0.00%
1 0.45%

0 0.00%
0 0.00%
0 0.00%

Table 4.3. Results of Micro Comparison #2.

Comparison of Hardware and Simulation #2

Application Algorithm

hrcmn!

IRefe_e file: _12._1l

;T_cal # of 4_'ItlS - 224

ITotal • of misses - !

I 0G.00K

,oo_-_,z_------_-----_,_ __ 7

_ooo,,i-- : ' /

I

Figure 4.5. Results of Micro Comparison #2.

110

Packet

1

2

3

4

5

6

7

8

Aatest2

TBI TBO TBIO

10288 27098 16810

6033 5884 16661

6035 6036 16662

6037 6037 16662

6040 6041 16663

6034 6031 16660

6035 6040 16665

6038 6036 16663

TBI

Aatest2s

TBO TBIO

351 17001 16650

6018 5995 16627

6004 6004 16627

6039 6039 16627

6004 6004 16627

6039 6039 16627

6004 6004 16627

6039 6039 16627

Table 4.4. Results of Macro Comparison #2.

29000

24000

19O00

14000

9000 '

4OOO

16OOO

Operating Point Plane

Application Algorithm

Comparison #2

16100

i I

l, J
r

i i

J
J

r "

! 6600 1670016200 16300 16400 16500 16800 16900

TmO

Figure 4.6. Results of Macro Comparison #2.

111

I

_t

'tt'Z

Position

-20

-19

-18

-17 _

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Number

0

0

0

0

0

0

0

0

0

0

3

1

1

9

1

1

6

Percent

0.00°_

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.26%

0.09%

0.09%

0.77%

0.09%

0.09%

0.51%

-3

-2

-1

594

20

32

50.90%

1.71%

2.74%

0 460 39.42%

1

2

3 I

4

5

6

7

8

9

10

1]

12

13

14

15

9 0.77%

4 0.34%

0 0.00%

1 0.09%

9 0.77%

4 0.34%

5 0.43%

7 0.60%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

16

17

18

19

20

Table 4.5. Results of Micro Comparison #3.

113

Packet

,

2

3

6

7

8

9

10

TBI

aatest

TBO TBIO

10288 27098 16810

6033 5884 16661

60.35 6036 16662

6037 6037 16662

6040 6041 16663

6034 6031 16660

6035 6040 16665

6038 6036 16663

6037 6036 16662

6035 14892 25519

11 6041 5466 24944

12 11108 8188 22024

13 8038 8688 22674

14 8040 8190 22824

15 8043 17620 32401

16

17

18

19

20

21

22

23

24

25

8039 6132 30494

8040 11653 34107

17067 11661 28701

11654. 11653 28700

11661 11661 28700

11653 11653 28700

11661 11678 28717

11653 11633 28697

11661 11783 28819

11502 26036 43353

11809 22912 54456

26167 22912 51201

22912 22912 51201

22912 22912 51201

22912 22912 51201

22912 22912 51201

22912 22912 51201

22912 22911 51200

22912 22870 51158

22912 19754 48000

26

27

28

29

30

31

32

33

34

35

TBI
aatests

TBO TBIO

351 17001 1665(

6018 5995 16627

6004 6004 16627 I

6039 6039 16627

6004 6004 16627

6039 6039 16627

6004 6004 1662_

6039 6039 16627

6004 6083 16706

6039 14654 25321

6004 5435 24752

10722 8160 2219(

8009 8646 22827

8008 8160 22979

8038 17382 32323

8020 6059 30362

8106 11572 33828

16896 11572 28504

11572 11572 28504

11572 11572 28504

11572 11572

11572 11572

11572 11572

11572 11572

11572 25978
11572 22842

25978 22842

22842 22842

22842 22842

22842 22842

28504

28504

28504

28504

42910

54180

51044

51044

51044

51044

22842 22842 51044

22842 22842 51044

22842 22842 51044

22842 22842 51044

22842 22842 51044

Table 4.6. Results of Macro Comparison #3.

114

290O0

2400O

19O00

14000 ,

9000 , ,

4O0O

14000

Operating Point Plane

Application Algorithm

Comparison #3

_ .."

j

19000 24000 29000 34000 39000

TIIO

i I

44000 49000 $4000

i "_e_" I'mmmne •
i

.. - e- -. $*mulat*o_ •

BE

1

Figure 4.8.Results ofMacro Comparison #3.

115

Failure @

Node2 Node3 Node1 Node4

7000 Exp.#1 Exp.#2 Exp.#3 Exp.#4

62oo Exp.#5 Exp. #6 Exp. #7 EXp.#8
8000 Exp. #9 Exp. #10 Exp. #11 Exp. #12

Table 4.7 Summary of All Experiments

It-l-liVe

AFaimIim _aa,t.ltt_
Fm@t 8t Nodo & I)_t lmek_ 10

$_00-

2500@,

20000 •

15000 •

IOOQO •

_00@,

0-

$$_11L6 T

il ! Idil

_mM m N IT m

s s !

m

Figure 4.9. TBI, TBO, and TBIO for Experiment #1

116

Packet

Experimental Calculated Differencein %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

1 351 17001 16650 0 16650 16650 100.00% 2.06% 0.00%

2 7030 7033 16653 _ 7022 7022 16650 0.11% 0.16% 0.02%

3 7013 7010 16650 7022 7022 16650 -0.13% -0.17% 000%

4 7030 7030 16650 7022 7022 16650 O. 11% O. 11% 0.00%

5 7010 7013 16653 7022 7022 16650 -0.17% -0.13% 0.02%

6 7033 7030 16650 7022 7022 16650 0.16% 0.11% 0.00%

7 7010 7010 16650 7022 7022 16650 -0.17% -0.17% 0,00%

8 7033 7033 16650 7022 7022 16650 0.16% 0.16% O.O(P_

9 7010 7010 16650 7022 7022 16650 -0.17% -0.17% 0,00%

lO 7033 15676 25293 7022 15665 25293 0,16% 0.07% 0.00%

11 7010 5409 23692 7022 5385 23656 :0.17% 0.44% 0.15%

12 7038 5386 22040 7022 5385 22019 0.23% 0.02% 0,10%

13 7010 5383 20413 7022 5385 20382 .0.17% -0.04% 0.15%

14 7061 5386 18738 7022 5385 18745 0.55% 0.02% -0.04%

15 7010 5383 17111 7022 5385 17108 -0.17% -0.04% 002%

16 7006 6548 16653 7022 6564 16650 -0.23% -0.24% 0.02%

17 7014 7122 16761 7022 7022 16650 -0.11% 1.40% 0.66%

18 7029 6921 16653 7022 7022 16650 0.10% -1.46% 0.02%

19 7034 7034 16653 7022 7022 16650 0.17% 0.17% 0.02%

20 7009 7009 16653 7022 7022 16650 -0.19% -0.19% 0.02%

21 7037 7034 16650 7022 7022 16650 0.21% 0.17% 0.00%

22 7006 7009 16653 7022 7022 16650 -0.23% -0.19% 0.02%

23 7037 7037 16653 7022 7022 16650 0.21% 0.21% 0.02%

24 7006 7006 16653 7022 7022 16650 -0.23% -0.23% 0.02%

25 7037 7037 16653 7022 7022 16650 0.21% 0.21% 0.02%

26 7006 7006 16653 7022 7022 16650 -0.23% -0.23% 0.02%

27 7040 7037 16650 7022 7022 16650 0.26% 0.21% 0.00%

28 7003 7006 16653 7022 7022 16650 -0.27% -0.23% 0,02%

29 7040 7040 16653 7022 7022 16650 0.26% 0.26% 0.02%

30 7003 7003 16653 7022 7022 16650 -0.27% -0.27% 0.02%

Table 4.8. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #1.

117

Exp.
Number

1
2
3
4
5
6
7

8

9

10

11

12

Faulty

Node

TBI Recovery Introduced

TBO Delay

2 7023 5385 8643

3 7023 6198 6520

1 7023 5385 3577

4 7023 5385 5811

F_st

Output

Delay

8643

4720

3577

5811

2 6236 5385 8727 8727

3 6236 6236 6614 4814

1 6236 5385 3628 3628

4 6236 5385 5846 5846

2 8036 5385 8659 8659

3 8036 6185 6455 4655

1 8036 5385 3569 3569

4 8036 5385 5831 5831

Table 4.9. Summary #1 of Experimental Results.

Exp.

Number

1

2

3

4

5

6

7

8

9

10

11

12

Faulty TBIO Recovery Permanent

Node Reduction Packets Delay

2 1638 6 0

3 825 6 0

1 1638 3 0

4 1638 4 0

2 851 N/A(8) 2083

3 0 N/A(0) 4720

1 851 N/A(3) 1432

4 851 7 0

2 2651 4 0

3 1851 3 0

1 2651 2 0

4 2651 3 0

Time to

Restore

42138

42138

21069

28092

N/A(6560)

N/A(0)

N/A(2460)

43652

32144

24108

16072

24108

Table 4.10. Summary #2 of Experimental Results.

118

APl_icztion Algorithm,

Fault at Node 3. Data packet 10

Relative

Time

25000

D&:3L_e_ _15 16 i? /

Number _v 21 22 23 _4]TUO

2_ 26 27 21 2g 30 T-TI

Figure 4.10. TBI, TBO and TBIO for Experiment #2.

119

Packet

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBI0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

271 16924 16653 0 16650 16650 100.00% 1.62% 0.02%

7030 7027 16650 7023 7023 16650 0.10% 0.06% 0.00%

7016 7016 16650 7023 7023 16650 -0.10% -0.10_ 0.00%

7027 7030 16653 7023 7023 16650 0.06% O. 10% 0.02%

7016 7016 16653 7023 7023 16650 -0.10% -0.10% 0.02%

7030 7027 16650 7023 7023 16650 0.10% 0.06% 0.0(PA

7016 7016 16650 7023 7023 16650 -0.10% -0.10% 0.00"A

7027 7030 16653 7023 7023 16650 0.06% 0.10% 0.02%

7016 7016 16853 7023 7023 16650 -0.10% -0.10% 0.02%

7030 11750 21373 7023 11743 21370 0.10% 0.06% 0.01%

7016 6212 20569 7023 6198 20545 -0.10% 0.23% 0.12%

7004 6209 19774 7023 6198 19720 -0.27% 0.18% 0.27%

7020 6186 18940 7023 6198 18895 -0.04% -0.10% 0.24%

7007 6183 18116 7023 6198 18070 -0.23% -0.24% 0.25%

7035 6200 17281 7023 6198 17245 0.17% 0.03% 0,21%

7025 6368 16624 7023 6428 16650 0.03% -0.94% -0.16%

7019 7022 16627 7023 7023 16650 -0.06% -0.01% -0.14%

7042 7042 16627 7023 7023 16650 0.27% 0.27% -0.14%

7019 7045 16653 7023 7023 16650 -0.06% 0.31% 0.02%

7042 7042 16653 7023 7023 16650 0.27% 0.27% 0.02%

7004 7001 16650 7023 7023 16650 -0.27% -0.31% 0.00%

7039 7042 16653 7023 7023 16650 0.23% 0.27% 0.02%

7004 7004 16653 7023 7023 16650 -0.27% -0.27% 0.02%

7042 7042 16653 7023 7023 16650 0.27% 0.27% 0.02%

7004 7004 16653 7023 7023 16650 -0.27% -0.27% 0.02%

7039 7039 16653 7023 7023 16650 0.23% 0.23% 0.02%

7007 7004 16650 7023 7023 16650 -0.23% -0.27% 0.00%

7036 7039 16653 7023 7023 16650 0.18% 0.23% 0.02%

7007 7007 16653 7023 7023 16650 -0.23% -0.23% 0.02%

7039 7039 16653 7023 7023 16650 0.23% 0.23% 0.02%

Table 4.11. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #2.

120

,._ • .

•_e_ ,-_S.

&,,_O _o_S_'_

Packet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Experimental Calculated Difference in %

TBI TBO TBIO TBI 'rBO TBIO TBI T]BO TBIO

351 1"/001 16650 0 16650 16650 100.00% 2.06% 0.00%

7030 7(_33 16653 7000 7000 16650 0.43% 0.47% 0.02%

7013 7010 16650 7000 7000 16650 0.19% 0.14% 0.00%

7030 7033 16653 7000 7000 16650 0.43% 0.47% 0.02%

7013 7013 16653 7000 7000 16650 0.19% 0.19% 0.02%

7033 7033 16653 7000 7000 16650 0.47% 0.47% 0.02%

7013 7010 16650 7000 7000 16650 0.19% 0.14% 0.00%

7030 7033 16653; 7000 7000 . 16650 0.43% 0.47% 0.02%

7013 7013 16653 7000 7000 16650 0.19% 0.19% 0.02%

7033 10610 20230 7000 10577 20227 0.47% 0.31% 0.01%

7002 5386 18614 : 7000 5385 18612 0.03% 0,02% 0.01%

7040 5383 16957 7000 5385 16997 0.57% -0.04% -0.24%

7028 6698 16627 7000 6653 16650 0.40% 0.67% -0,14%

7014 7014 16627 7000 7000 16650 0.20% 0.20% -0.14%

7003 7029 16653 7000 7000 16650 0.04% 0.41% 0.02%

7014 7014 16653 7000 7000 16650 0.20% 0.20% 0.02%

7035 7032 16650 7000 7000 16650 0.59% 0.46% 0.00%

7011 7011 16650 7000 7000 16650 O.16% O. 16% 0.00%

7032 7035 16653 7000 7000 16650 0.46% 0.50% 0.02%

7011 7011 16653 7000 7000 16650 0.16% 0.16% 0.02%

7032 7032 16653 7000 7000 16650 0,46% 0,46% 0,02%

7011 7011 16653 7000 7000 16650 O.16% O. 16% 0.02%

7038 7035 16650 7000 7000 16650 0.54% 0.50% 0.00%

7008 7008 16650 7000 7000 16650 O.11% O. 11% 0,00%

7035 7038 16653 7000 7000 16650 0.50% 0.54% 0.02%

7008 7008 16653 7000 7000 ' 16650 O.11% O. 11% 0.02%

7035 7035 16653 7000 7000 16650 0.50% 0.59% 0,02%

7008 7008 16653 7000 7000 16650 0.1 I% 0.11% 0,02%

7041 7038 16550 7000 7000 16650 0.58% 0.54% 0.00%

7005 7005 16650 7000 7000 16650 0.07% 0.07% 0.00%

Table 4.12. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #3.

122

Application Algorithm,

Fault at Node 4, Data packet I0

25000

L

11 _

1500o

Time I0000 !J'_

22 21 24 _m
2$

2_ 2| tm

29 30

Figure 4.12. TBI, TBO and TBIO for Experiment #4.

123

Packet
I

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

1 351 17001 16650 0 16650 ' 16650 100.00% 2.06% 0.00%

2 7030 7033 16653 7023 7023 16650 O.10% O.14% 0.02%

3 7013 7010 16650 7023 7023 16650 -0.14% -0.19% 0.00%

4 7030 7033 16653 7023 7023 16650 O. 10% O. 14% 0.02%

5 7013 7013 16653 7023 7023 16650 -0.14% -0.14% 0.02%

6 7033 7033 16653 7023 7023 16650 0.14% 0,14% 0,02%

7 7013 7010 16650 7023 7023 16650 -0.14% -0.19% 0.00%

8 7030 7033 16653 7023 7023 16650 0.10% 0.14% 0.02%

9 7013 7010 16650 7023 7023 16650 -0.14% -0.19% 0.00%

10 7033 12844 22461 7023 12834 22461 0.14% 0.08% 0.00%

11 7010 5386 20837 7023 5385 20823 -0.19% 0.02% 0.07%

12 7033 5383 19187 7023 5385 19185 0.14% -0.04% 0,01%

13 7028 5383 17542 7023 5385 17547 0.07% -0.04% -0.03%

14 7003 6114 16653 7023 6126 16650 -0.29% -0.20% 0.02%

15 7008 7008 16653 7023 7023 16650 -0.21% -0.21% 0.02%

16 7035 7035 16653 7023 7023 16650 O. 17% O.17% 0.02%

17 7011 7011 16653 7023 7023 16650 -0.17% -0.17% 0.02%

18 7035 7032 16650 7023 7023 16650 0.17% 0.13% 0.00%

19 7011 7011 16650 7023 7023 16650 -0.17% -0.17% 0.00%

20 7032 7035 16653 7023 7023 16650 0.13% 0.17% 0.02%

21 7011 7011 16653 7023 7023 16650 -0.17% -0.17% 0.02%

22 7032 7032 16653 7023 7023 16650 0.13% 0.13% 0.02%

23 7014 7014 16653 7023 7023 16650 -0.13% -0.13% 0.02%

24 7032 7029 16650 7023 7023 16650 O.13% 0.09% 0.00%

25 7014 7014 16650 7023 7023 16650 -0.13% -0.13% 0.00%

26 7029 7032 16653 7023 7023 16650 ' 0.09% 0.13% 0.02%

27 7014 7014 16653 7023 7023 16650 -0.13% -0.13% 0.02%

28 7029 7029 16653 7023 7023 16650 0.09% 0.09% 0.02%

29 7017 7017 16653 7023 7023 16650 -0.09% -0.09% 0.02%

30 7029 7026 16650 7023 7023 16650 0.09% 0.04% 0.00%

Table 4.13. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #4.

124

Appiicauc_ Algorithm,

Fault at Node 2, Data packet tO

!"_" I

Figure 4.13. TBI, TBO and TBIO for Experiment #5.

125

Packet

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

1 351 17001 16650 0 16650 16650 100.00% 2.06% 0.00%!

2 6238 69-84 16696 6236 6236 16650 0.03% 0.76% 0.28%

3 6221 6149 16624 6236 6236 16650 -0.24% -1.41% -0.16%

4 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

5 6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

6 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

7 6243 6240 16624 6236 6236 16650 O. 11% 0.06% -0.16%

8 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

9 6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

101 6237 14964 25351 6236 14963 25377 0.02% 0.01% -0.10%

11 6240 5412 24523 6236 5385 24526 0.06% 0.50% -0.01%

12 6231 5412 23704 6236 5365 23675 -0.08% 0.50% 0.12%

13 6220 5409 22893 6236 5385 22824 -0.26% 0.44% 0.30%

14 6213 5383 22063 6236 5385 21973 -0.37% -0.04% 0.41%

15 6241 5386 21208 6236 5385 21122 0.08% 0.02% 0.41%

16 6204 5383 20387 6236 5385 20271 -0.52% -0.04% 0.57%

17 6214 5386 19559 6236 5385 19420 -0.35% 0.02% 0.71%

18 6237 5563 18885 6236 5549 18733 0.02% 0.25% 0.80%

19 6330 6212 18767 6236 6236 18733 1.48% -0.39% 0.18%

20 6227 6215 18755 6236 6236 18733 -0.14% -0.34% 0.12%

21 6230 6206 18731 6236 6236 18733 -0.10% -0.48% -0.01%

22 6209 6209 18731 6236 6236 18733 -0.43% -0.43% -0.01%

23 6215 6215 18731 6236 6236 18733 -0.34% -0.34% -0.01%

24 6206 6206 18731 6236 6236 18733 , -0.48% -0.48% -0.01%

25 6212 6212 18731 6236 6236 18733 -0.39% -0.39% -0.01%

26 6212 6215 18734 6236 6236 16733 -0.39% -0.34% 0.01%

27 6209 6206 18731 6236 6236 18733 -0.43% -0.48% -0+01%

28 6209 6209 18731 6236 6236 18733 -0.43% -0.43% -0.01%

29 6215 6215 18731 6236 6236 18733 -0.34% -0.34% -0.01%

30 6206 6206 18731 6236 6236 18733 -0.48% -0.48% -0.01%

Table 4.14. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #5.

126

._._.ze _-__" ,_I, ,_0

._e_ 86.

Packet

Experimental

TBI TBO TBIO

Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO

351 17.001 16650 0 16650 16650 100.00% 2.06% 0.00_

6238 6284 16696 6236 6236 16650 0.03% 0.76% 0.28%

6221 6149 16624 6236 6236 16650 -0.24% -1.41% -0.16%

6237 6240 16627 6236 6236 16650 0,02% 0.06% -0,14%

6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

6 6237 6240 16627 6236 8236 16650 0.02% 0.06% -0.14%

7 6243 6240 16624 6236 6236 16650 0.11% 0.06% -0A6%

8 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

9 6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

10 6237 11051 21438 6236 11050 21464 0.02% 0.01% -0.12%

11 6240 6212 21410 6236 6236 21464 0.06% -0.39% -0.25%

12 6214 6212 21408 6236 6236 21464 -0,35% -0.39% -0.26%

13 6237 6209 21380 6236 6236 21464 0.02% -0.43% -0.39%

14 6220 6209 21369 6236 6236 21464 -0.26% -0.43% -0.44%

15 6212 6209 21366 6236 6236 21464 -0,39% -0.43% -0.46%

16 6209 6212 21369 6236 6236 21464 -0.43% -0.39% -0.44%

17 6209 6212 21372 6236 6236 21464 -0.43% -0.39% -0.43%

18 6209 6212 21375 6236 6236 21464 -0.43% -0.39_ -0.42%

19 6212 6209 21372 6236 6236 21464 -0.39% -0.43% -0.43%

20 6212 6209 21369 6236 6236 21464 -0,39% -0.43% -0.44%

21 6212 6209 21366 6236 6236 21464 -0.39_ -0.43% -0.46%

22 6209 6212 21369 6236 6236 21464 -0.43% -0.32% -0.44%

23 6209 6212 21372 6236 6236 21464 -0.43% -0.39% -0.43%

24 6209 6212 21375 6236 6236 21464 -0.43% -0.39% -0.42%

25 6212 6209 21372 6236 6236 21464 -0.39% -0.43% -0.43%

26 6212 6209 21369 6236 6236 21464 -0.39_ -0.43% -0.44%

27 6212 6209 21366 6236 6236 21464 -0.39% -0.43% -0.46%

28 6209 6212 21369 6236 6236 21464 -0.43% -0.39_ -0.44%

29 6209 6212 21372 6236 6236 21464 -0.43% -0.39_ -0.43%

30 6209 6212 21375 6236 6236 21464 -0.43% -0.39% -0.42_

Table 4.15. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #6.

128

\ L

_,x5 '_t_'_"_o
_g,_e • "

e,__ T_IO _o_._._e_

.Lsg

Packet

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15[

16I
17i

18

19

20

21

22

23

24

25

26

27

28

29

30

351 17001 16650 0 16650 16650 100.00% 2.06% 0.00%

6238 6284 16696 6236 6236 16650 0.03% 0.76% 0.28%

6221 6149 16624 6236 6236 16650 -0.24% -1.41% -0.16%

6237 6240 16627 6236 6236 16650 0.02% 0.06% -0,14%

6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

6243 6240 16624 6236 6236 16650 O. 11% 0.06% -0.16%

6237 6240 16627 6236 6236 16650 0.02% 0.06% -0,14%

6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

6237 9865 20252 6236 9864 20278 0.02% 0.01% -0.13%

6240 5386 19398 6236 5385 19427 0.06% 0.02% -0.15%

6214 5383 18541 6236 5385 18576 -0.35% -0.04% -0.19%

6237 5838 18157 6236 5742 18082 0.02% 1.64% 0.41%

6220 6209 18136 6236 6236 18082 -0.26% -0.43% 0.30%

6212 6212 18105 6236 6236 18082 -0.39% -0.39% 0.13%!

6209 6209 18080 6236 6236 18082 -0.43% -0.43% -0.01%

6209 6212 18080 6236 6236 18082 -0.43% -0.39% -0.01%

6209 6212 18083 6236 6236 18082 -0.43% -0.39% 0.01%

6212 6212 18086 6236 6236 18082 -0.39% -0.39% 0.02%

6212 6209 18083 6236 6236 18082 -0.39% -0.43% 0.01%

6212 6212 18083 6236 6236 18082 -0.39% -0.39% 0.01%

6209 6209 18080 6236 6236 18082 -0.43% -0.43% -0.01%

6209 6212 18080 6236 6236 18082 -0.43% -0.39% -0.01%

6209 6212 18083 6236 6236 18082 -0.43% -0.39% 0.01%

6212 6212 18086 6236 6236 18082 -0.39% -0.39% 0.02%

6212 6209 18083 6236 6236 18082 -0.39% -0.43% 0.01%

6212 6212 18083 6236 6236 18082 -0.39% -0.39% 0.01%

6209 6209 18080 6236 6236 18082 -0.43% -0.43% -0.01%

6209 6212 18080 6236 6236 18082 -0.43% -0.39% -0.01%

6209 6212 18083 6236 6236 18082 -0.43% -0.39% 0.01%

Table 4.16. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #7.

130

App|iCatiolt Algorithm,

Fault at Node 4, Data packet 10

I, 1

2oooo_ 1 i

ILela_

T_

Figure 4.16. TBI, TBO and TBIO for Experiment #8.

131

Packet

Experimental

TBI TBO TBIO

Calculated Difference in %

TBI TBO "TBIO TBI TBO TBIO
I I

1 351 17001 16650 0 16650 16650 100.00% 2.06% 0.00%

2 6238 6284 166M 6236 6236 16650 0.03% 0.76% 0.28%

3 6221 6149 16624 6236 6236 16650 -0.24% -1.41% -0.16%

4 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

5 6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

6 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

7 6243 6240 16624 6236 6236 16650 O.11% 0.06% -0.16%

8 6237 6240 16627 6236 6236 16650 0.02% 0.06% -0.14%

9 6240 6237 16624 6236 6236 16650 0.06% 0.02% -0.16%

10 6237 12083 22470 6236 12082 22496 0.02% 0,01% -0.12%

11 6240 5436 21668 6236 5385 21645 0.06% 0,97% O. 11%

12 6237 5383 20814 6236 5385 20794 0.02% -0.04% 0.10%

13 6217 5386 19983 6236 5385 19943 -0.31% 0.02% 0.20%

14 6237 5383 19129 6236 5385 19092 0.02% -0.04% O. 19%

15 6213 5383 18299 6236 5385 18241 -0.37% -0.04% 0.32%

16 6214 5386 17471 6236 5385 17390 -0.35% 0.02% 0.46%

17 6240 5487 16718 6236 5496 16650 0.06% -0.16% 0.41%

18 6204 6113 16627 6236 6236 166501 -0.52% -2.01% -0.14%

19 6232 6229 16624 6236 6236 16650 -0.06% -0.11% -0.16%

20 6204 6204 16624 6236 6236 16650 -0.52% -0.52% -0.16%

21 6232 6232 16624 6236 6236 16650 -0.06% -0.06% -0.16%

22 6204 6207 16627 6236 6236 16650 ' -0.52% -0.47% -0.14%

23 6229 6229 16627 6236 6236 166501 -0.11% -0.11% -0.14%

24 6204 6204 16627 6236 6236 16650 -0.52% -0.52% -0.14%

25 6229 6226 16624 6236 6236 16650 -0.11% -0.16% -0.16%

26 6207 6207 16624 6236 6236 16650 -0.47% -0,47% -0.16%

27 6229 6229 16624 6236 6236 16650 -0.11% -0.11% -0.16%

28 6204 6207 16627 6236 6236 16650 -0.52% -0.47% -0.14%

29 6229 6229 16627 6236 6236 16650 -0.11% -0,11% -0.14%

30 6204 6204 16627 6236 6236 16650 -0.52% -0.52% -0.14%

Table 4.17. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #8.

132

Appiicatlon Algorithm,

Fault at Node 2, Data packet I 0

Itilatbve
Time

Figure 4.17. TBI, TBO and TBIO for Experiment #9.

133

Packet

1

2

3

4

5

6

7

8

9

1o

11

12

13

14

15

16

1'7

18

19

20

21

22

23

24

25

26

27

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

28

29

30

351 17013 16662 0 16650 16650 100,00% 2.13% 0.07%

8042 80_7 16657 8036 8036 16650 0.07% 0.01% 0.04%

8037 8030 16650 8036 8036 16650 0.01% -0.07% 0,00%

8034 8037 16653 8036 8036 16650 -0.02% 0.01% 0.02%

8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8034 16654 8036 8036 16650 -0.02% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 16696 25316 8036 16695 25309 0.01% 0.01% 0.03%

8034 5383 22665 8036 5385 22658 -0.02% -0.04% 0.03%

8003 5386 20048 8036 5385 20007 -0,41% 0.02% 0.20%

8033 5420 17435 8036 5385 17356 -0.04% 0.65% 0.45%

8041 7259 16653 8036 7330 16650 0.06% -0.98% 0.02%

8026 8031 16658 8036 8036 16650 -0.12% -0.06% 0.05%

8044 8037 16651 8036 8036 16650 0.10% 0.01% 0,01%

8034 8037 16654 8036 8036 16650 -0.02% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8037 8031 16651 8036 8036 16650 0.01% -0.06% 0.01%

8037 8037 16651 8036 8036 16650 0.01% 0.01% 0.01%

8034 8037 16654 8036 8036 15650 -0.02% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8037 8031 16651 8036 8036 16650 0.01% -0.06% 0.01%

8037 8037 16651 8036 8036 16650 0.01% 0.01% 0.01%

8034 8037 16654 8036 8036 16650 -0.02% 0.01% 0.02%

8034 8037 16657 8036 8056 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8037 8031 16651 8036 8036 16650 0.01% -0.06% 0.01%

Table 4.18. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #9.

134

i,l'! _ Ll_1313

_e _.x_"_t_, _i_O

Packet

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO " TBIO TBI TBO TBIO

1

2

3

4

5

6

7

8

9

lO

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3o!

351 17013 16662 0 16650 16650 100.00% 2.13% 0.07%

8042 8037 16657 8036 8036 16650 0.07% 0.01% 0.04%

8037 8030 16650 8036 8036 16650 0.01% -0.07% 0.00%

8034 8037 16653 8036 8036 16650 -0.02% 0.01% 0.02%

8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8034 16654 8036 8036 16650 -0.02% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 12692 21312 8036 12691 21305 0.01% 0.01% 0.03%

8034 6183 19461 8036 6185 19454 -0.02% -0.03% 0.04%

8072 6186 17575 8036 6185 17603 0.45% 0.02% -0.16%

8034 7113 16654 8036 7083 16650 -0.02% 0.42% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8034 8034 16557 8036 8036 16650 -0.02% -0.02% 0.04%

8037 8034 16654 8036 8036 16650 0.01% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0,01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8034 8034 16657 8036 8036 16650 -0,02% -0.02% 0.04%

8037 8034 16654 8036 8036 16650 0.01% -0.02% 0.02%

8037 8037 16654 8036 8036 16550 0.01% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

8034 8034 16657 8036 8036 16650 -0.02% -0.02% 0.04%

8037 8034 16654 8036 8036 16650 0.01% -0.02% 0.02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

8037 8037 16657 8036 8036 16650 0.01% 0.01% 0.04%

Table 4.19. Experimental and Calculated Values of

TBI, TBO and TBIO for Experiment #10.

136

"_'_ _._.<_.,_>_._o _<,,'__o fo__'_+_ _'_

Packet

Exper/mental Calculated Difference in %

TBI TBO TBIO TBI TBO TBIO TBI TBO TBIO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

2O

211

22:

23

24

25,

"6

27!

28

29

30!

351 17013 16662 0 16650 16650 100.00% 2.13% 0.07%

8042 8037 16657 8036 8036 16650 0.07% 0.01% 0.04%

8037 8030 16650 8036 8036 16650 0.01% -0.07% 0.00%

8034 8037 16653 8036 8036 16650 -0.02% 0.01% 0.02%

8033 8034 16654 8036 8036 16650 -0.04% -0.02_ 0.02%

8037 8037 166541 8036 8036 16650 0.01% 0,01% 0,02%

8034 8034 16654 8036 8036 16650 -0.02% -0,02% 0,02%

8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8034 8033 16653 8036 8036 16650 -0.02% -0,04% 0.02%

8037 11606 20222 8036 11605 20219 0,01% 0.01% 0.01%

8003 5383 17602 8036 5385 17568 -0.41% -0.04% O.19%

8028 7079 16653] 8036 7118 16650 -0. I(PA -0.55% 0.02%

8023 8023 16653 8036 8036 16650 -0.16% -0.16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8023 8023 16653 8036 8036 16650 -0.16% -0.16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8020 8020 16653 8036 8036 16650 -0.20% -0.20% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8023 8023 16653' 8036 8036 16650 -0.16% -0.16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8020 8023 16656 8036 8036 16650 -0.20% -0.16% 0.04%

8003 8000 16653 8036 8036 16650 -0.41% -0.45% 0.02%

8023 8023 16653 8036 8036 16650 -0,16% -0,16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8023 8023 16653 8036 8036 16650 -0.16% -0.16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

8020 8020 16653 8036 8036 16650 -0.20% -0.20% 0.02%

8003 8003 16653 8036 8036 16650 -0,41% -0,41% 0.02%

8023 8023 16653 8036 8036 16650 -0.16% -0.16% 0.02%

8003 8003 16653 8036 8036 16650 -0.41% -0.41% 0.02%

Table 4.20. Experimental and Calculated Values of

TBI, TBO and TBIO for Experiment #11.

138

Application Algorithm.

Fault at Node 4, Dalui I_cket 10

Ittla_

Time

2OOOO

,o°i
2 J 4 _ " P

G 7 | 9 ,

Piuna_er "" Zl ;rZ __ '

ZJ Z4 vmTM

z$ 26 27 2S Tm

29)o

Figure 4.20. TBI, TBO and TBIO for Experiment #12.

139

Packet

Experimental Calculated [Difference in %

TBI TBO TBIO TBI TBO "11310 l, TBI TBO TBIO

351 170,13 16662 0 16650 16650 100.00% 2.13% 0.07%

8042 8037 16657 8036 8036 " I6650 ' 0.07% 0.01% 0.04%

8037 8030 16650 8036 8036 16650 0.01% -0.07% 0.00%

8034 8037 16653 8036 8036 16650 -0.02% 0.01% 0.02%

8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

6 8037 8037 16554 8036 8036 16650 0.01% 0.01% 0.02%

7 8034 8034 16654 8036 8036 16650 -0.02% -0.02% 0.02%

8 8037 8037 16654 8036 8036 16650 0.01% 0.01% 0.02%

8 8034 8037 16657 8036 8036 16650 -0.02% 0.01% 0.04%

10 8037 13868 22488 8036 13867 22481 0,01% 0,01% 0.03%

11 8034 5386 19840 8036 5385 19830 -0.02% 0,02% 0.05%

12 8033 5383 17190 8036 5385 17179 -0.04% -0.04% 0.06%

13 8009 7472 16653 8036 7507 16650 -0.34% -0.47% 0.02%

14 8026 8034 16661 8036 8036 16650 -0.12% :0.02% 0.07%

15 8044 8034 16651 8036 8036 16650 0.10% -0.02% 0.01%

16 8034 8040 16657 8036 8036 16650 -0.02% 0.05% 0.04%

17 8034 8030 16653 8036 8036 16650 -0.02% -0.07% 0.02%

18 8037 8037 16653 8036 8036 16650 0.01% 0.01% 0.02%

19 8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

20 8037 8034 16651 8036 8036 16650 0.01% -0.02% 0.01%

21 8034 8040 16657 8036 8036 16650 -0.02% 0.05% 0.04%

22 8034 8030 16653 8036 8036 16650 -0.02% -0.07% 0.02%

23 8037 8037 16653 8036 8036 16650 0.01% 0.01% 0.02%

24 8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

25 8037 8034 16651 8036 8036 16650 0.01% -0.02% 0.01%

26 8034 8040 16657 8036 8036 16650 -0.02% 0.05% 0.04%

27 8034 8030 16653 8036 8036 16650 -0.02% -0.07% 0.02%

28 8037 8037 16653 8036 8036 16650 0.01% 0.01% 0.02%

29 8033 8034 16654 8036 8036 16650 -0.04% -0.02% 0.02%

30 8037 8034 16651 8036 8036 16650 0.01% -0.02% 0.01%

Table 4.21. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #12.

140

_tu
k-'

18000

16000

14000

O

12000

10000

8000

6000

4000

16000

J

f
r"

17000

Operating Pc/hi Plane
ApplleatlonAlgorithm

. /
\ \ j J7

_ / " "J" " Vaultat node3

/ t L/ _0" -- Fau]tat. el

I
18000 19000 20000 21000 22000 23000 2400o 9J_nnn ,2Rnnn

• 810 EXl_flrnents #I, #2, #3, #4

TBI = 7000

Figure 4.2.1. Operating Point Plane, TBI -- 7000.

Operating l_nt Plane
Applimtton Algorithm

18000

16000

14000

o

12ooo

10000

8000

6OO0

4000

160OO 17000

/

!

!
, !
: I

: I

19000 21000 23000 2_

TBIO

Fault at node 2

e_ Fault at node 4

- -b. - Fault at node S

e. - Fault at node 1

Figure 4.2.2. Operating Point Plane, TBI = 6200.

L_o

0

18000

16000

14000

12000

10000

8000

6000

4000

15000

OperaChngPo/ntPlane

AppHeaflonAIgodthm

/

/
/

Fault at node 2

_" Fau]t at node 4

" "&" - Fault at node 3

_" " Fault at node 1

17000 19000 21000

I'BIO

23000 25000 27000

Figure 4.2.3. Operating Point Plane, TBI = 8000.

Operating Point Plane

Application Algorithm

Fault at node 2, data packet 10

1600o _-

14000

b

12OO0

oooo -
b

SOO0 -_-

6000 -"

4OO0

16O00

o •

oO°°" ..s."t

.pB B . e . p B BBWW. WOW_BBB_B_*WB O#

TII_6200 i

_- _" .' I L--- _.,ooo •

17000 18000 19000 20000 21000 22000 23000 24000 2 SO00 26000

1110

Figure 4.24. Operating Point Plane, Fault at node 2.

144

18000 -F
I

16000 --

i
I

14000

I
12000 -'-

6o0o _

4000

16000

Operating Point Plane

Application Algorithm

Fault at node 3, data packet 10

:] I ; _ I i _ ,

17000 18000 19000 20000 21000 22000 23000 24000 25000 26000

1110

Figure 4.25. Operating Point Plane, Fault at node 3.

145

Openning Point PiiM

Applir.at_on Algorithm

Fault at nocle I, data packet 10

! 8co0

16Oo0

14000

12000

I0000

8o00

r

6ooo T

4000

1600o

._o

w#- "_° __

! 7OOO

I 1

I I_000 19000 20000 21000 22000 2500Q 24000 25000

1110

26ooo

Figure 4.26. Operating Point Plane, Fault at node 1.

146

! 8OOO

16000

)4000

12000

t 0000

BOO0

T
i

i

I

i

5O0O

4O00

16000

Operating Point Plane

Application Algorithm

Fault at node 4, data packet .10

BB °_ S_,_

WW_ BBB" SW

! ''_--" Tll1--6200 L

i m e'-- TBI'70G0

17000 18000 1 go00 20000 21000 22000 23000 24000 2 SO00 26000

1110

Figure 4.27.Operating Point Plane, Fault at node 4.

147

4.5 Chapter Summary

The followmg objectives have been accomplished in this chapter. The

development of the simulation program has been explained to demonstrate

its validity as an AMOS simulation. Furthermore, the verification of the

simulation by comparison with hardware experiments has been attained in

two phases. The first phase was to verify the simulation under normal

conditions, i.e., no fault introduced in the system. This is called the steady

state validation of the simulation. The second phase was to verify the

simulation under the effects of a fault in the system. This is called the

fault transient validation of the simulation. Lastly, having the simulation

verified as a sound means to test the theory developed in Chapter Two,

twelve experiments were carried out. Along with these experiments, all

calculations and paths were found to retrieve the token lifetimes in the

paths of the graph. These calculations were compared against the

experimental data and were found to be, for all practical purposes, accurate

within 1%. Considering that the execution time of the nodes and sources

are not exactly the same for every data packet, the calculated data should

be valid for the study of these systems. The data show that the model can

be used as a tractable and a valid method to investigate the behavior of

these systems under any transient conditions due to delays in the system

and to delays due to faults in particular.

148

The report objectives to provide a model that should furnish the time

to recover from a fault and determine whether it recovers at all have been

reached. Also the question to whether a permanent delay has been

introduced into the system can be answered with the model presented here

in. It has been shown that the model is adequate for the analysis of the

transient behavior of a fault-tolerant multicomputer system under recovery

and restoration. An example of how to use the analytical model developed

in Chapter Two to generate the data shown in this chapter is presented in

Appendix A.

149

CHAPTER FIVE

CONCLUSIONS

5.1 Objectives

The modeling and design of a fault-tolerant multiprocessor system has

been addressed in this research report. In particular, the transient model

of the system during recovery and restoration after a fault has occurred is

investigated. Given that a multicomputer system is designed using the

Algorithm to Architecture To Mapping Model (ATAMlVD model, and that a

fault (death of a computing resource) occurs during its normal steady-state

operation, a model is presented as a viable research tool for predicting the

performance bounds of the system during its recovery and restoration

phases.

The ATAMM model has been used to study the behavior of real-time

multicomputer systems in steady state operation. It has been successful in

1. identifying performance bounds and operation strategies;

2. identifying a performance degration strategy when hardware failures

cause a reduction in processors; and

3. identifying set of operating points suitable to be used for different

150

numbers of computing resources available in the system at run time. An

objective central to this research is the extension of the ATAMM model to

study the transient behavior of a system in the event of a fault. When a

fault occurs in a system, there is a transient in the system's performance.

The error detection and error recovery phases require time to repair the

system and to bring it back to a steady state.

Modeling issues that have been addressed in this research are

identified as follows:

1. The transient time behavior of the system output while it is recovering

from a fault.

2. The time required for the system to return to a steady state. That is,

the outputs have recovered their scheduled outputs without any time

skew.

The time the system reaches (if ever) the target state aRer a fault

occurs is of importance in evaluating the system's reliability.

1

5.2 Model Development

The model development objectives were met by the following process.

1. ATAMM for steady state was used as a starting point.

2. The AMG (Algorithm Marked Graph), which expresses the data flow

within one data packet, was unfolded to uncover the data flow

151

dependency across data packets. This unfolding provides a view of the

data flowing not only from source to sink but also across subsequent

data packets. This unfolded AMG is called XAMG (eXtended Algorithm

Marked Graph).

o

°

The CMG (Computational Marked Graph), which expresses the data

and control flow within one data packet, was unfolded in the same

manner to obtain a view of the data and control flow across data

packets. This unfolded CMG is called XCMG (eXtended Computational

Marked Graph).

Based on these unfOlded graphs, the times when the nodes fire and

deposit were defined. These times were used to develop the concept of

token lifetime. The token lifetime of an edge is the time a token spends

in the edge. It is the time from when the token is deposited by the

initial node connected to the edge to when is encumbered by the

terminal node connected to the edge.

. This token lifetime is of importance since it is time that data or control

tokens spend without being processed by the successor node and it was

used to estimate the amount of delay that could be absorbed in the

edge. The notion of delay was introduced to express the effect caused by

152

a fault at a given node. The delay introduced in the process time period

effectively increases the time a node takes to process the data at the

input. This delay is introduced due to the fact that a node that has

failed has to be restarted after the error is detected. This delay is

transformed in a delay to deposit the node's output data. Once delay

has been introduced into the graph, it is important to study how it

propagates to other nodes and it effectively delays the time to deposit of

other nodes.

. A fire-equivalent node model was developed to express a node's delay

to deposit in terms of introduced delay and token lifetime.

. The notion of lifetime equivalent paths was introduced to characterize

one path between nodes by their token lifetime. This was further

developed to find dominant lifetime equivalent paths when there are

more than one path connecting two nodes. The construction of paths

between two nodes was used to show that the paths connecting any two

nodes can be reduced to a dominant lifetime equivalent path.

. The delay to deliver system outputs at the expected time may be

calculated by finding the dominant paths between the faulted node and

153

the sinks m the XAMG or XCMG. This model may used to predict

system performance during recovery by calculating the delays to deposit

of the nodes in the graph.

The benefit of the transient model is that it may be used to find the

effect of the delay to deposit of a node r on the deposit time of another node

p. If there exists one or more directed paths from node r to node p, the

dominant lifetime equivalent path can be found and the delay to deposit of

node p can be expressed in terms of the path's token lifetime and the delay

to deposit of node r. Since this can be performed between any two nodes,

the propagation of delay from the faulted node to any node in the graph

may be determined.

The drawback of the model is that it is computationally intensive. In

order to estimate the delay that propagates to a node, all paths need to be

searched between the node that generates the delay and the node of

interest. After this is performed, the token lifetimes are to be calculated

and a dominant lifetime equivalent path is to be found. This is no small

task even in the case of a simple graph since an exhaustive search has to

be performed every time. The purpose of the model was to evaluate the

behavior of ATAMM based systems undergoing a fault.

154

5.3 Evaluation and Testing

The target system for evaluation of the fault tolerent model was the

Generic VHSIC Spaceborne Computer (GVSC). The system required the

design of an operating system to follow the ATAMM design guidelines and

to be fault-tolerant. This operating system was written for an IBM GVSC

host system developed for NASA Langley Research Center. ATAMM

requirements allowed the system to be designed in a modular fashion. The

main entities of interest were the computing resources and the nodes to be

executed in the graph. The implementation requires the communication

between computing resources, which are hardware entities, and nodes in

the graph, which are software entities. The idea of data encapsulation in

object-oriented programming was used to isolate the communication

between these two types of entities. A message passing scheme was used

to relay a uniform type of message between nodes and computing

resources. This allowed the system's structure to be highly modular and

provided a better setting for testing and debugging as well as for software

updates and modifications. The hardware dependency was restricted to

low level software modules so that the system may be easily portable to

other platforms. This makes the system hardware architecture

independent at the highest level of operation, i.e., at the message handling

level.

155

5.4 Simulation Evaluation

A simulation was developed from the same code used for the target

GVSC system. This simulation was written to run under the Microsoft

Windows environment on the IBM PC and compatibles. It was designed

by surrounding the code from the GVSC system with objects as in object-

oriented programming. The data structure that was used in the hardware

system was also used in the simulation so that both systems may be

initialized by the same data file. This also allows updates to the hardware

to be moved to the simulation more easily. The simulation was the ideal

tool to test the new model since the hardware was not available at the

time of experimentation. Furthermore, the simulation is easier to use

since it only requires an MS DOS system running Microsoft Windows.

Therefore, the simulation needed to be validated to be used as an

authoritative tool to test the model.

The simulation was validated by evaluating the behavior of the

simulation and actural hardware in two phases. The first phase was the

evaluation of the simulation with respect to steady stae behavior. The

second phase was the evaluatin of the simulation with respect to transient

behavior.

Two graphs were used to validate the steady state behavior. Using

these graphs, a macro camparison and micro camparison were performed

between the hardware and the simulation. The micro comparison involved

156

the comparison of the sequenceof internal events that both systems go

through while executing a graph. This comparison was performed directly

at the fdt files generated by the systems. An fdt file is a log of all the

firing of the internal transitions in the graph. Of interest is the occurrence

of particular internal event within +/- z positions of the two log files.

The micro comparison for the first graph indicated that 99% of the

events in the fdt from the simulation were within +/- 2 positions with

respect to the hardware fdt. The micro comparison for the secondgraph

indicated that 99% of the events in the fdt from the simulation were within

+/- 2 positions with respect to the hardware fdt.

The macro comparison related the evalautions of TBI, TBO and TBIO

for individual data packets for both systems. Values from both the

hardware and the simulation, were compared data packet by data packet.

The macro comparison for the first graph showed that the maximum

difference between the values of TBI, TBO and TBIO from both systems

was of 1.38%. The macro comparison for the second graph indicated that

the maximum difference between the values of TBI, TBO and TBIO from

both systems was of 1.89°£. These results are significant in affirming the

determinism of an ATAMM based multicomputing system. Of additional

importance is that the simulation integrity is established for determing

how the hardware wil perform with different graphs in steady state.

157

Comparisons of simulated and hardware behavior were performed on

one graph to validtae the behavior of the simulation with repect to

transient behavior. The system was subject to three faults while

executing this graph and degraded from four computing resources to one

computing resources. There were 35 data packets executed during the

test. The simulation was set up to execute the same graph for the same

number of inputs. It was also subject to faults on the same nodes at the

same data packets as the hardware system was. The actual processor

assignment was disregarded in the micro comparison since after the first

fault the actual processor assignment was different in both systems. The

micro comparison yielded a 96% of the events in the +/- 3 positions range.

The macro comparison presented a maximum difference of 3.47% in the

values of TBI, TBO and TBIO. These comparisons provided the basis for

determining the validity of the transient simulation behavior respect to the

hardware system.

5.5 Multicomputer Transient Model Evaluation

Twelve experiments were run on one four node graph to evaluate the

multicomputer transient model presented in Chapter Two. Each

experiment was run for 30 data packets with a fault injected at the data

packet ten. Three different TBI were used: 7000, 6200 and 8000. For each

one of the experiments in the groups of common TBI a different node was

158

set to fail. The results were presented in tables showing the values for

TBI, TBO and TBIO for each of the data packets.

To evaluate the model, the paths between the faulted node and the

sinks were identified, their token lifetimes were computed and the

dominant lifetime paths were identified. The delays to the sinks were

computed for each one of the data packets in each of the experiments.

With these delay values, the TBO and TBIO for each data packet were

calculated and gathered along with the simulated experimental values.

The calculated values of TBO and TBIO were mostly within 0.5%

difference with respect to the simulation values with nearly 700

comparisons made.

5.6 Conclusions

From the experimental data, a number of conclusions are drawn.

1. The model is extremely accurate in predicting the transient behavior of

a multicomputer system designed along the ATAMM guidelines.

2. It may be seen in the collected data is that if the system is driven at a

TBI above TBOLB, the system recovers and reaches the target

operating point. In three out of four experiments where the system was

driven at TBI equal to TBOLB, the system did not reach the target

operating point and a permanent delay was added to TBIO in

subsequent data packets. It can be seen that if the system is driven at

TBOLB, the system does not have enough token lifetime to absorb the

159

delay introduced by the fault.

.

°

The recovery TBO is different relatave to which node is faulted. This is

a value that depends not on TBI but exclusively on the node and

attendent graph topology where the fault is injected. It can be seen in

the results that when nodes 1, 2 or 4 fail the recovery TBO is of

approximately 5385. When the fault is at node 3 the recovery TBO is of

approximately 6200. These values are dependent on where the fault is

injected and not on the value of the system's TBI. The same conclusion

can be reached for the values of introduced delay and first output delay

as well. It is interesting to note that the value of TBIO reduction, i.e.,

the value by which TBIO is reduced while the system is recovering,

depends on the value of TBI and which node failed. This TBIO

reduction is equal to TBI minus recovery TBO. It should be noted that

when the fault is at node 2 the TBIO reduction is equal to the system

slack as defined in Chapter Two.

Another conclusion is that the higher the TBI, the faster the system

reaches the target operating point. For example, when node 4 fails, the

system reaches the target operating point in 24,108 time units for a

TBI of 8000, whereas it takes 43,652 time units for a TBI of 6200. This

is an important factor to consider when designing systems to withstand

160

faults and to reach an operating point within certain critical time. The

penalty that is paid by increasing the TBI is that the system does not

operate at optimal steady state throughput. The model helps in the

decision making at design time by allowing the designer to choosethe

most suitable solution for the application at hand, with the full

knowledge of advantages and disadvantages of a given operating point.

The designer is able to balance steady state performance versus

transient state performance.

. It is noted that the objectives of the transient model development were

successfully achieved. From the experimental data,it has been shown

that the model has been used to reliably estimate the time the

multicomputer system takes to recover from a fault and reaches the

target operating point. It has also been used to evalute whether the

system transient returns to the target operating point at all. If the

system does not reach the target operating point, it can be determined

what operating point it reaches and the value of a permanent delay

which is introduced into the system's TBIO.

. The determinism of the original steady state ATAMM model has been

carried over to the transient state ATAMM extension. This extension to

ATAMM permits the analysis of the and evaluation of the transient

161

behavior of a multicomputing system during fault recovery and

restoration. Thus fault tolerent strategies may be evaluated with

respect to desired performance objectives.

5.7 Future Research

The enhancement of the ATAMM model presented in this research has the

potential for evaluating other multicomputer systems designed with the

ATAMM model. In particular, the transient behavior of the systems can

be explored to design and deliver highly reliable and robust multicomputer

systems. Through analysis provided via the transient modeling, potential

behavior probelems may be identified with subsequent solutions

highlighted.

The analysis may be easily extended to accept more than one fault at a

time. The assumption throughout the research has been that there is only

one fault present in the system until the system reaches a steady state. If

two faults were assumed to occur close to each other in time, such that the

effect of the first has not disappeared from the system before the second

arrives, the effect of both faults may be said to be overlapping. If the faults

do not overlap, the analysis is simplified since each one can be explored

individually as has been presented. If both faults overlap, it might be

possible to estimate the effect of each fault separately and the effects might

be combined to obtain the overall effect. This combination might be

162

performed at points of interest such as the data sinks. For a given sink in

the graph, the value of delay caused by the first fault and the value of

delay caused by the second fault may be compared by a given function

determine the effective delay to the sink. This method might also be

extended to study more than two faults that overlap.

One possible enhancement to the model is to improve the

computational efficincey of identifying the dominant paths in the graphs.

The search of all paths and their corresponding token lifetimes is presently

done in a straight forward and exhaustive manner which is

computationally time consuming. Therefore, it is desirable to develop

more efficient algorithms for finding the token lifetime between two nodes

in the system. Possibly these algorithms may take advantage of certain

cyclic behavior in the graph patterns due to the unfolding nature of the

model. The model may be used to characterize systems in their transient

behavior from either fault recovery or in the event nodes perform in a time

variable fashion. As is, the model helps in the understanding of the

propagation of delay in a system. This delay is not restricted to be

produced by a fault in a node. The delay may be normal to the operation of

a system as is the caseof a variable time node graph. If every node in the

graph were to have a different time every instance it is run, this variation

may be considered as a delay introduced with respect to a mean value of

the process time of the nodes. Since in such a scenario a node may not only

163

introduce a delay but also introduce a speedup in the process, an extension

to the definition of token lifetime might be performed. The idea of speedup

propagation might be pursued as a symmetric measure to delay

propagation. It was observed that, in parallel paths, the path with the

minimum process time would have the maximum token lifetime. In the

caseof a node that finishes earlier than expected, it adds token lifetime to

the path. If the node is in the lifetime dominant path between two nodes

it effectively increases the token lifetime and the ability to absorb delay

increases between the two nodes. The lifetime dominant path between

two nodes would be expressed by a random variable dependent on the

various token lifetimes of the paths between the nodes.

Among the questions that could be addressed is whether a system is

stable under certain conditions such as being driven at a given TBI. As an

example, if the system is intended to be run at a desireable average

performance there may exist a possibility that the system becomeunstable

once a certain value of internal delay has been reached. That is the

trajectory of the instantaneous operation point in the operaing plane

cannot return to the target steady state operating point. The value of the

probability that this critical delay is reached may be found by extending

this model to include variable time nodes. These and other questions may

be addressed by the model by extending its usefulness beyond the

deterministic value of the node's times. Considering the behavior under

164

the conditions of variable time nodes, it is also possible to expect that the

system's operating point would not be contained in a region about a stable

point in the operating point plane. It may be of interest to know if there

are unstable regions that a system's operating points would fall into under

these conditions. The question of whether there is a strange attractor in

the data derived from these operating points is of interest to dynamical

systems analysts. The study of the multicomputer systems as dynamical

systems may be achieved by extending this performance model. Although

the systems are deterministic in nature, under certain conditions the

systems may seemunpredictable and of random behavior. Thus, it may be

of interest to address issues of stability and instability, chaotic or

unpredictable behavior about a sequenceof instantaneous operating points.

165

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

T. Anderson and P. Lee, Fault Tolerance Principles and Practice.

Englewood Cliffs, NJ; Prentice-Hall, 1981.

David A. Rennels, "Fault-Tolerant Computing - Concepts and

Examples," IEEE Transactions on Computers, Volume C-33, Number

12, pages 1116-1129, Dec. 1984.

John A. Stankovic and Krithi Ramamritham, "Editorial: What is

Predictability for Real-Time Systems?," Real-Time Systems, Kluwer

Academic Publishers, Netherlands, 1990.

Roland R. Mielke, John W. Stoughton and Sukhamoy Sore,

"Modeling and Optimum Time Performance for Concurrent

Processing," NASA Contractor Report 4167, Grant NAG1-683,

August 1988.

Sukhamoy Sore, "Performance Modeling and Enhancement for the

ATAMM Data Flow Architecture," Ph.D. Dissertation, Old Dominion

University, Norfolk, VA, May 1989.

S. Sore, J. W. Stoughton, and R. R. Mielke, "Performance Modeling

in the ATAMM Data Flow Architecture," Presented at the Ninth

IEEE International Phoenix Conference on Computers and

Communications, Scottsdale, Arizona, March 21-23, 1990.

Victor P. Nelson, "Fault-Tolerant Computing: Fundamental

Concepts," Computer, Vol. 23, Number 7, pages 19-25, July 1990.

R. Mielke, J. Stoughton, S. Som, R. Obando, M. Malekpour, and B.

Mandala, "Algorithm to Architecture Mapping Model (ATAMM)

Multicomputer Operating System Functional Specification," NASA

Contractor Report 4339, Cooperative Agreement NCC1-136,

November 1990.

Herbert Y. Chang, "An Algorithm for Selecting an Optimum Set of

Diagnostic Tests," IEEE Transactions on Electronic Computers, Vol.

EC-14, No. 5, pages 706-711, October 1965.

Franco P. Preparata, Gernot Metze, and Robert T. Chien, "On the

Connection Assignment Problem of Diagnosable Systems," IEEE

Transactions on Electronic Computers, Vol. EC-16, No. 6, pages 848-

166

[II]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

854, December 1967.

Ferruccio Barsi, Fabrizio Grandoni, and Piero Maestrini, "A Theory

of Diagnosability of Digital Systems," IEEE Transactions on

Computers, Vol. C-25, No. 6, pages 585-593, June 1976.

Kyung-Yong Chwa and S. Louis Hakimi, "On Fault Identification in

Diagnosable Systems," IEEE Transactions on Computers, Vol. C-30,

No. 5, pages 414-422, June 1981.

Anton T. Dahbura and Gerald M. Masson, "An O(n 2.-5) Fault

Identification Algorithm for Diagnosable Systems," IEEE

Transactions on Computers, Vol. C-33, No. 6, pages 486-492, June

1984.

Fred J. Meyer, and Dhiraj K. Pradhan, "Dynamic Testing Strategy

for Distributed Systems," IEEE Transactions on Computers, Vol. 38,

No. 3, pages 356-365, March 1989.

Tein-Hsiang Lin, and Kang G. Shin, '%ocation of a Faulty Module in

a Computing System," IEEE Transactions on Computers, Vol. 39.

No. 2, pages 182-194, February 1990.

Krishna Kant, 'Performance Analysis of Real-Time Software

Supporting Fault-Tolerant Operation," IEEE Transactions on

Computers, Vol. 39, No. 7, pages 906-918, July 1990.

A. Avizienis, "The N-Version approach to fault-tolerant software,"

IEEE Transactions on Software Engineering, Vol. SE-11, No. 12,

pages 1491-1501, December 1985.

A. Ralston & E. D. Reilly, Jr. Editors, Encyclopedia of Computer

Science and Engineering, Second Edition, New York, N.Y., Van

Nostrand Reinhold, pages 1060-1075, 1983.

T. Anderson & P.A. Lee, Fault Tolerance: Principles and Practice,

London, England, Prentice-HaU International, Inc., pages 63-67,

1981.

T. Anderson & P_A. Lee, Fault Tolerance: Principles and Practice,

London, England, Prentice-Hall International, Inc., pages 113-142,

1981.

T. Anderson & P.A. Lee, Fault Tolerance: Principles and Practice,

London, England, Prentice-Hall International, Inc., pages 147-169,

1981.

167

[223

[23]

[24]

[25]

[26]

[27]

[28]

[29]

T. Anderson & PJk. Lee, Fault Tolerance: Principtes and Practice,

London, England, Prentice-Hall International, Inc., pages 173-225,
1981.

T. Anderson & PJk. Lee, Fault Tolerance: Principles and Practice,

London, England, Prentice-Hall International, Inc., pages 231-247,
1981.

D.B. Lomet, '_Process Structuring, Synchronization and Recovery

Using Atomic Actions," SIGPLAN Notices vol. 12, No. 3, pages 128-
137, March 1977.

S. Rangarajan, and D. Fussell, 'Diagnosing Arbitrarily Connected

Parallel Computers with High Probability," IEEE Transactions on
Computers, Vol. 41, No. 5, pages 606-615, May 1992.

R. Gerst, A. Jefferson Offutt, and F. C. Harris, "Estimation and
Enhancement of Real-Time SoRware Reliability through Mutation

Analysis," IEEE Transactions on Computers, Vol. 41, No. 5, pages
550-558, May 1992.

P. J. Hayes, R. L. Jones, H. F. Benz, A. M. Andrews, and M. R.

Malekpour, "Enhanced ATAMM Implementation on a GVSC

Multiprocessor,"GOMAC92/1992 Di__estofPapers. 181, November

9-12, 1992.
Robert L. Jones, John W. Stoughton, and Roland R. Mielke,

"Analysis Tool forConcurrent Processing Computer Systems," IEEE

Proceedings of the Southeastcon '91,vol.2,620, Williamsburg, VA,

April 7-10, 1991.

R. L. Jones, J. W. Stoughton, and R. R. Mielke, "ATAMM Analysis

Tool,"NASA CR 187625, October, 1991.

168

APPENDIX A

This appendix is used to illustrate how TBO and TBIO are calculated

for the experiments in Section 4.4 using the material developed in Chapter

Two. The values of the token lifetime used in this illustration do not

necessarily reflect a particular experiment. The XCMG for the

"Application Algorithm" is shown in Figure A. 1. The values shown on some

edges are the values for the corresponding token lifetime. The node

denoted with the letter A is where the delay is introduced. The sink

denoted with the letter B relates to the data packet for which the values of

TBO and TBIO are to be calculated. LEP1, 2 indicates the edge between

nodes 1 and 2.

The first step is to identify all the directed paths from node A to sink

B. These paths are highlighted in Figure A.2. These are the paths that are

of interest in the computation of the dominant equivalent path from node A

to sink B.

The concatenation operator is applied to edges e10,11 and ell,s; e2,12,

e12,13, and elz, s: and es, 9 and e9, s. The resultant graph is shown in Figure

A.3. The operations are

LEPlo,H + LEPH. s = LEP, o.8,

LEP2.,2 + LEP,2,, 3 + LEP,3, s = LEP2. 8

LEPs, 9 + LEPg, s = LEPs. B.

169

//
/
/
/

©

/'

/
/
/

/

/
/

/-
/

/

/

/// _ i

// i

Figure A.I.

170

\

_L
IJo

_D

L_

\
\

Q
Figure A.3

Figure A.4

G
I 2

. _(_)

Figure A.5

172

Distribution of the concatenation operator over the parallel operator

is applied to edges e2,3, e3, 4 and e3,5; e5,6, e6, 7 and ee,8; and e1,10 , e2,10 and

e10,8. After the operations

nERo,6+ngP .TflnzP6, =LEP.JJLEPs, ,and
LEP,.,oHLEP_., o + ngP, o.8 = LEP,.sHLEP2, 8

the graph in Figure A.4 is obtained.

The dominant path between 2 and 8 is obtained. Distribution of the

concatenation operator over the parallel operator

is applied; and the graph in Figure A.5 results.

The dominant path between 2 and 5 is obtained. Distribution of the

concatenation operator over the parallel operator is applied,

LEP,. 2 + LEP_. 5 LEP2,7 LEP2,s = LEPI. s LEP,.7 LEP,,s

resulting in the graph shown in Figure A.6.

The dominant path between 1 and 8 is obtained. Distribution of the

concatenation operator over the parallel operator is applied,

LEP,. s + LEPs, 8 LEPs, 7 = LEP1. s LEP,,7

resulting in the graph in Figure A.7.

173

Figure A.6

?

¢D

Figure A.7

Figure A.8

174

Dominant paths between 1 and 8, and 1 and 7 are found. Distribution

of the concatenation operator over the parallel operator is applied,

res

A.8.

LEP,, +LEP. LEP , --LEP,, [ILEP,,
ulting in the graph in Figure

The dominant path between 1 and 8 is found. Concatenation operator

is applied,

LEP,. 8 + LEPs, s = LEP_,_,

resulting in the graph in Figure A.9.

The dominant path between 1 and B is found. The dominant path is

shown in Figure A. 10.

The token lifetime between node A and sink B is equal to 3358.

Assuming that the delay introduced is 8643, the delay to fire the sink is

8643 - 3358 = 5285. If the value for TBIO is normally 16650, the value of

TBIO for that particular data packet to be delivered at sink B is 16650 +

5285 - 21935.

Assuming that the delay to fire the sink prior to sink B is 8643 - 1679

= 6994, the value for that data packet TBIO is 16650 + 6994 - 23644.

Assuming that the sink prior to sink B should have fired at time tB_ I,

175

and that sink B should have fired at time tB, the value of TBO between

these two sinks is calculated by

(D

Figure A.9

t

(D
Figure A. 10

176

BO = t B + 5285 - (tB_ 1 + 6994)

= t B + 5285 - t___ - 6994

= t_ - t___ + 5285 - 6994

= 7023 + 5285 - 6994

= 5314,

where t B - tB. 1 = 7023 or TBI under normal operation.

By using this procedure for each one of the 30 sinks in the XCMG,

each TBO and TBIO can be calculated. Every entry in the tables in Section

4.4 were calculated this way.

177

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

P..sbra¢ m;)o_ng t_tfde_ fox this c:_leo_io_ of infon'Nttlon is utimlmKI to average 1 hou¢ per res_oonse, including Ihe _rne for reviewing mstmc'Uons, warch_ ezming data sources,

_¢hedng and mai_aining the data needed, and c_r@leling and tevi_ the collection of information. Senti comments regarding this but(lee estimam or any o_hw asCect of ths

ao_eclton of k_orccklkxt, ic¢ludit_ suo_tioct$ for _l¢lu_ lh_ butdett, to W_t hin_ton H_uafters Services, _recl_rale lot Informmfon O_4tatiof_ and Fl4_orts. 1215 Jefferson Da_s

Highway, SMile 1204. Arlington, VA 22202-4302. and 1o the Olfi¢_ of Ma_l and Bu_J¢. Paperwork Reduction Ptojea (0704-0';88). Washct_totl. DC 2050*_.

1. AGENCY USE ONLY f.eave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1995 Contlactor Report 1/1/92 - 17_J31/92
5. FUNDING NUMBERS4, TITLE AND SUBTITLE

A PERFORMANCE PREDICTION MODEL FOR A FAULT-TOLERANT
COMPUTER DURING RECOVERY AND RESTORATION

6. AUTHOR(S)

Rodrigo A. Obando
John W. Stoughton

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Old Dominion University Research Foundation
P. O. Box 6369
Norfolk, VA 23508-0369

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

G NCC1-136

WU 233-01-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

_10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-195074

11.SUPPLEMENTARYNOTES

NASA Langley Technical Monitor: Paul J. Hayes

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

'12h. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

The modeling and design of a fault-tolerant multiprocessor system is addressed in this report. Of interest is the
behavior of the system during recovery and restoration after a fault has occurred. The multiprocessor systems
are based on the Algorithm to Architecture Mapping Model (ATAMM) and the fault considered is the death ol a

processor. The developed model is useful in the determination of performance bounds of the system during
recovery and restoration. The performance bounds include time to recover from the fault, time to restore the
system, and determination of any permanent delay in the input to output latency after the system has regained
steady state. Implementation of an ATAMM based computer was developed for a 4-processor Generic VHSIC
Spacebourne Computer (GVSC) as the target system. A simulation of the GVSC was also written on the code
used in the ATAMM Multicomputer Operating System (AMOS). The simulation is used to verify the new model
for tracking the propagation of the delay through the system and predicting the behavior of the transient state o!
recovery and restoration. The model is shown to accurately predict the transient behavior of an ATAMM based
multicomputer during recovery and restoration.

14. SUBJECTTERMS

Multiprocessor, fault-tolerant, concurrent processing, real-time

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

189

16. PRICE CODE

A09

20, LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500
i

Standard Form 298 (Rev. 2-89)
Prescrit)e¢l by ANSI SI(:I, Z39-18

